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Abstract

This paper presents a novel copula-based autoregressive framework for multilayer arrays of

integer-valued time series with tensor structure. It complements recent advances in tensor

time series that predominantly focus on real-valued data and overlook the unique properties of

integer-valued time series, such as discreteness and non-negativity. Our approach incorporates

feedback effects for the time-varying parameters that describe the counts’ temporal dynamics

and introduces new identification constraints for parameter estimation. We provide an asymp-

totic theory for a Two-Stage Maximum Likelihood Estimator (2SMLE) tailored to the new

tensor model. The estimator tackles the model’s multidimensionality and interdependence

challenges for large-scale count datasets, while at the same time addressing computational

challenges inherent to copula parameter estimation. In this way it significantly advances the

modeling of count tensors. An application to crime time series demonstrates the practical

utility of the proposed methodology.
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1 Introduction

The study of tensor time series has gained considerable attention in recent years due to its relevance

in fields such as finance (Aldasoro and Alves, 2018; Chang et al., 2023), neuroscience (Zhou et al.,

2013), meteorology and environmental science (Yuan et al., 2023; Chen et al., 2024), and many

others. Traditional time series models are often inadequate for capturing the complex, multidimen-

sional structures present in such data, as they are generally designed for univariate or multivariate

(vector) observations. Recent advancements in the literature have addressed these limitations by

developing approaches that better capture the intricate relationships and dependencies in multi-

dimensional arrays of time series through order-p tensor autoregressive models (Chen et al., 2021;

Billio et al., 2023; Samadi and Billard, 2024) or tensor factor models (Chen et al., 2022; Han et al.,

2024). However, this work has thus far mainly focused on real-valued data. Little progress has

been made in the context of integer-valued tensor time series, despite its practical importance in

applications involving count data, such as financial transactions, crime reports, and biological data.

Integer-valued time series carry unique properties, including discreteness and non-negativity, which

typically make the tools developed for real-valued tensors unsuitable.

The literature on integer-valued time series is relatively well established, particularly in the

univariate context (Davis et al., 2021; Fokianos, 2022). Two common approaches, INteger-valued

AutoRegressive (INAR) models (Al-Osh and Alzaid, 1987; Drost et al., 2009) and INteger-valued

GARCH models (INGARCH) (Heinen, 2003; Ferland et al., 2006) have been designed to accommo-

date the unique properties of count data. Their multivariate extensions are also available (Pedeli

and Karlis, 2013a,b; Fokianos et al., 2020; Debaly and Truquet, 2023). Nevertheless, these methods

fall short when applied to settings involving multilayer arrays of integer-valued data, as they are

not equipped to handle the inherent complexities of tensor structures and the associated abundance

of parameters to be estimated.

In this paper, we aim to bridge this gap by introducing a novel autoregressive copula-based

modeling approach for multilayer arrays of integer-valued time series with tensor structure. To

the best of our knowledge, this is the first study to introduce a model for tensor integer-valued

time series. The joint dependence of the multidimensional array is accounted for by a probabilistic

framework based on discrete marginals and a copula. Copulas provide a flexible way to capture the

dependence structure between random variables (Nelsen, 2006; Joe, 2014), making them a suitable

tool for handling the complex interactions present in different tensor dimensions. Our approach

extends the applicability of copula-based models to the context of tensor count data, thus opening

up new possibilities for analyzing multidimensional datasets with integer-valued observations.

An important distinction of our work is the incorporation of temporal feedback dependence into
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the count tensor autoregression. Previous tensor autoregressive models have primarily relied on

temporal dependence limited to a finite lag (Li and Xiao, 2021; Billio et al., 2023). This fails to

capture the long-range dependence that often exists in empirical datasets. Our model, in contrast,

considers the entire historical path of the count tensor time series through the inclusion of lagged

time-varying parameters in the autoregressive dynamics. This provides a more empirically congruent

representation of the temporal dependencies in typical data sets. Moreover, we introduce new

identification constraints for the autoregressive tensors, which enable the full identification of model

parameters. These constraints address the limitations of existing estimation algorithms, which

are often hindered by iterative procedures that can be computationally inefficient and prone to

convergence issues (Chen et al., 2021; Hsu et al., 2021; Li and Xiao, 2021). Our approach not only

simplifies the estimation process, but also ensures that the parameters are uniquely identified. The

latter is crucial for the interpretability and reliability of the model.

We establish the asymptotic theory for a Two-Stage Maximum Likelihood Estimator (2SMLE)

of the tensor model’s parameters. In this approach, the parameters associated to the time-varying

tensor means are estimated in a first stage by a Quasi-Maximum Likelihood Estimator (QMLE)

(Gourieroux et al., 1984; Ahmad and Francq, 2016). Next, the copula parameters are estimated

in a second stage by using the first-stage estimation of the time-varying means as a plug-in in the

log-likelihood function. Although this approach is well-known in copula theory, the development of

such an estimator represents a significant advancement, as it not only accommodates the complex-

ities of multidimensional count data, but also extends existing asymptotic results to counts with

tensor structures. The two-stage MLE framework allows one to handle the challenges posed by the

multi-dimensionality and interdependencies in tensor data at the same time. As the estimation of

copula parameters is often complicated by computational scalability issues as the dimensionality

of the data increases (Panagiotelis et al., 2012), we propose practical solutions to these challenges

for integer-valued tensor data by a suitable specification of copula parameters or by a likelihood

approximation. This further enhances the feasibility of the model and the two-stage estimator for

large multidimensional integer-valued datasets. Collectively, these advancements offer researchers

powerful new tools for uncovering relationships in structured count datasets that were thus far not

attainable through conventional univariate or multivariate analyses of integer-valued time series.

The rest of the paper is organized as follows. Section 2 gives a short introduction to tensor

notation. Section 3 describes the general copula-based tensor count autoregressive model, discusses

its identification and stationarity conditions, and introduces the two-stage estimation procedure.

Section 4 provides a detailed treatment of the asymptotic theory for the first-stage QMLE. Large

sample properties of the 2SMLE are established in section 5 and proposes an approximation to
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retain computational feasibility in large tensor dimensions. Section 6 introduces the special cases of

linear and log-linear copula tensor INGARCH models, discusses their properties and derives related

numerical results. An empirical application to crime time series is presented in section 7. The

proofs of the main results are postponed to the appendix. All the other proofs are contained in an

online appendix in the supplementary material together with further numerical results.

2 Tensor and matrix notation

An N -order real-valued tensor is an N -dimensional array X = (Xi1...iN ) ∈ Rn1×···×nN with entries

Xi1...iN , for is = 1, . . . , ns and s = 1, . . . , N . The order is the number of dimensions (also called

modes). Vectors and matrices are examples of 1- and 2-order tensors, respectively. In the rest of

the article, we use lower-case letters for vectors, capital letters for matrices, and calligraphic capital

letters for tensors. The mode-s product C = X ×s B of a tensor X ∈ Rn1×n2×···×nN and a matrix

B ∈ Rms×ns yields a tensor C ∈ Rn1×···×ns−1×ms×ns+1×···×nN with entries

Ci1···is−1jsis+1···iN =
ns∑

is=1

Xi1···is−1isis+1···iNBjsis .

The compact notation X ⋆A = X ×1 A1 ×2 · · · ×N AN denotes the multilinear product between an

N -order tensor X ∈ Rn1×n2×···×nN and a set of matrices A = {As}Ns=1 such that As ∈ Rms×ns , for

s = 1, . . . , N . The result is a tensor of size m1 ×m2 × · · · ×mN .

The vectorization operator x = vec(X ) ∈ Rn1n2···nN stacks all the elements of a tensor X ∈
Rn1×n2×···×nN in a vector of length n =

∏N
s=1 ns with the entry at position i1+

∑N
s=2(is−1)n1n2 · · ·ns−1

equal to Xi1...iN . The multilinear product can equivalently be defined in vector form as vec(X ⋆A) =

(AN ⊗ AN−1 ⊗ · · · ⊗ A1) vec(X ). For more details on tensor operators see Cichocki et al. (2015).

The symbols I, 1 andO are the identity matrix, a vector of ones and a matrix of zero, respectively,

all of suitable dimensions depending on the context. The notation |A|e for a matrix A ∈ Rn1×n2

denotes the elementwise absolute value. The quantity ρ(A) stands for the spectral radius of A. Let

a ∈ Rn be a vector. Then, ∥a∥p denotes the lp norm. The notation ∥a∥ stands for l1 norm. For

the same reason, |||A|||p (|||A|||) stands for the generalized matrix norm induced by the lp (l1) vector

norm. If n1 = n2, these norms are matrix norms. The inequality x ≤ y between vectors x, y ∈ Rn

denotes xi ≤ yi for all i = 1, . . . , n.
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3 Copula tensor count autoregressions

Consider a tensor time series of counts {Yt}t∈Z of order N with Yt ∈ Nn1×n2×···×nN and Ft denotes the

σ-field that is generated by {Yτ ,Xτ , τ ≤ t} where {Xt}t∈Z ∈ Rn1×n2×···×nN is a tensor of exogenous

covariates. Then, Yt = (Yi1...iN ,t) is a N -dimensional array of time series of counts, where Yi1...iN ,t

is the single element of the tensor. We assume that each element of the tensor is generated by the

following quantile transformation, for t ∈ Z,

Yi1...iN ,t = F−1
i1...iN

(Ui1...iN ,t;Λi1...iN ,t) , 1 ≤ is ≤ ns , 1 ≤ s ≤ N (1)

where Λi1...iN ,t = E(Yi1...iN ,t|Ft−1), and F−1
i1...iN

( · ;Λi1...iN ,t) is a shorthand for F−1
i1...iN

( · ;Λi1...iN ,t|Ft−1),

which denotes the conditional (on the past) quantile function of the Poisson distribution with

conditional mean Λi1...iN ,t ∈ R+. The process {Ui1...iN ,t}t∈Z is a sequence of random variables which

are iid over time, follow the standard uniform distribution, Ui1...iN ,t ∼ U(0, 1), and which are the

single elements of the tensor Ut = (Ui1...iN ,t) ∈ [0, 1]n1×···×nN . Define n =
∏N

s=1 ns. By vectorizing all

the elements of Ut, i.e., ut = vec(Ut) ∈ [0, 1]n, the joint distribution of ut conditional on the past is

denoted by Cr. This distribution depends on a set of parameters r, which we write as ut|Ft−1 ∼ Cr.

Then, Cr is a conditional copula function, i.e., a conditional joint probability distribution on [0, 1]n

with uniform marginals (Patton, 2002, 2006). For more details on copula functions see Nelsen

(2006).

Let Λt = (Λi1...iN ,t) ∈ Rn1×···×nN
+ denote the N -dimensional tensor of Poisson conditional

means. Define some measurable one-to-one functions g : Rn1×···×nN
+ → Rn1×···×nN , f : Nn1×···×nN →

Rn1×···×nN where g(X ) means that g(·) is applied elementwise for each element of the tensor. The

same holds for f(·). Some examples of specifications of these functions are presented in section 6.

Set Vt = g(Λt) and Zt = f(Yt) for all t ∈ Z. We propose to model the dynamics of the latent

conditional means with the following tensor count autoregression. For t ∈ Z,

Vt = D + Vt−1 ⋆A + Zt−1 ⋆B + Xt−1 ⋆Q (2)

where D ∈ Rn1×···×nN is a tensor of intercepts. Moreover, we recall that Vt−1 ⋆A = Vt−1 ×1 A1 ×2

· · · ×N AN is the multilinear product and A = {As}Ns=1 is set of matrices such that As ∈ Rns×ns are

coefficient matrices for s = 1, . . . , N . The same holds for the other tensors. Following Li and Xiao

(2021, Sec. 2.4) it can be seen that each matrix As in the tensor model (2) captures the impact of

Vt−1 on Vt along the s-th direction of the tensor. Similar arguments hold for Bs and Qs. Therefore,

the matrices {As, Bs, Qs}Ns=1 will be the focus of the estimation. To further clarify the interpretation

of the parameters in tensor matrices, we report in appendix A the description of model (1)-(2) and

the interpretation of its coefficient matrices in the special case N = 2.
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Note that equation (2) does not only depend on lag-one effects of the tensors {Yt−1,Xt−1},

but on their whole past dynamics Ft−1 through the inclusion of the lagged time-varying tensor

parameter Vt−1. Therefore, the stochastic process jointly defined by (1)-(2) will be called copula

tensor count autoregression since it generates a tensor of count time series, where each univariate

time series is marginally Poisson (conditional on the past), i.e. Yi1...iN ,t|Ft−1 ∼ Poisson(Λi1...iN ,t)

and the joint dependence between the counts is modeled through the conditional copula function

Cr. For example, when the joint dependence is modelled through a Gaussian copula we have

Cr(ut) = Φr

(
Φ−1(u1,t), . . . ,Φ

−1(un,t)
)

(3)

where Φr denotes the joint cumulative distribution function (cdf) of the multivariate standard

normal distribution with correlation matrix R such that r = vech(R) holds the vectorized strictly

lower triangular part of R, and Φ−1 denotes the inverse cdf of a standard normal distribution. The

correlation matrix can be completely unstructured or take a specific form, e.g. a tensor correlation

R = RN ⊗RN−1 ⊗ · · · ⊗R1 where Rs corresponds to the mode s correlations, for s = 1, . . . , N . See

section 6.1 for further details and examples.

3.1 Vectorization

Define the n-dimensional vectors yt = vec(Yt), zt = vec(Zt), λt = vec(Λt), νt = vec(Vt) and

xt = vec(Xt). We have zt = f(yt) and νt = g(λt), where now the functions f and g are as defined

in (2), but applied to each element of the vectorized tensors. Model (1)-(2) can be represented in

vectorized form for t ∈ Z as

yh,t = F−1
h (uh,t;λh,t) , 1 ≤ h ≤ n , νt = d+ Aνt−1 +Bzt−1 +Qxt−1 (4)

where d = vec(D), A = AN⊗AN−1⊗· · ·⊗A1, B = BN⊗BN−1⊗· · ·⊗B1, and Q = QN⊗QN−1⊗· · ·⊗
Q1. The dynamics of λt are modeled through their one-to-one transformation νt in the right-hand

side equation of (4). The elementwise functions F−1
h (·;λh,t) are the same Poisson quantiles defined

in (1), but applied after vectorization of the tensors. Therefore, from the properties of the quantile

function we obtain that the joint conditional cdf of yt takes the form

F (yt;λt, r) = Cr (F1(y1,t;λ1,t), . . . , Fn(yn,t;λn,t)) (5)

where Fh(yh,t;λh,t) for h = 1, . . . , n are the cdfs of univariate conditional Poisson distributions.

From the vector form (4), tensor count autoregressions can be seen as multivariate count autore-

gressions with parameter constraints. In the usual specification of multivariate count autoregressions

(Fokianos et al., 2020) the matrices A,B,Q would be n × n unconstrained matrices. Therefore,
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the total number of parameters to estimate is M1 = n + 3n2 = n + 3
∏N

s=1 n
2
s. Instead, in our

specification such matrices are given by a set of Kronecker products, requiring the estimation of

m1 = n+3
∑N

s=1 n
2
s parameters. Even when the tensor order N and tensor dimensions ns are small,

it can easily be seen that M1 ≫ m1. Therefore, multivariate count autoregressions are usually over-

parametrized for tensor datasets, whereas model (1)-(2) is specifically suited for estimation with

multidimensional integer-valued time series. This comes at the cost of identifiability issues in the

elements of the coefficients matrices As (Chen et al., 2021; Li and Xiao, 2021). For example, it is

clear from (4) that even though the product matrix A is identified, the model remains unchanged

if two matrices As and Al, with s ̸= l, are divided and multiplied by the same nonzero constant,

respectively.

3.2 Parameter identification and stationarity conditions

The parameters of model (1)-(2) are not univocally identifiable. In order to solve this problem,

previous contributions have proposed relatively complex identifiability conditions on all the elements

of the parameter matrices; see for example Li and Xiao (2021, Prop. 1). However, such conditions

cannot easily be incorporated in Maximum Likelihood (ML) or Least Squares (LS) estimation.

Iterative estimation algorithms have been proposed to overcome this problem, where ML/LS are

sequentially applied on one parameter matrix at a time while keeping all other matrices fixed

(Chen et al., 2021), leading to a cumbersome iterative updating scheme. Moreover, the proposed

conditions typically only guarantee identification up to sign changes. Some authors (Billio et al.,

2023) do not impose any identifiability constraints, arguing that the Kronecker product matrices

in (4), like A, are identifiable. This approach implies renouncing the interpretation of the single

matrices As and the computation of their standard errors, since the Fisher information matrix of

ML/LS would be singular without identifiability constraints. We overcome these limitations by

imposing the following identifying restrictions.

I For a set of matrices A = {As}Ns=1, define the single elements of As =
(
A

(s)
ij

)
for i, j = 1, . . . , ns

and s = 1, . . . , N , and let A
(N−1)
11 = · · · = A

(2)
11 = A

(1)
11 = 1 .

Theorem 1. Consider model (1)-(2). If condition I holds for A, B and Q, then the matrices

{As, Bs, Qs}Ns=1 are identified.

This identifiability condition is conceptually simple and in line with similar restrictions employed

in the literature, e.g. for factor models (Bai and Li, 2012). Moreover, it achieves full unequivocal

identification as it is also sensitive to the sign of the parameters. Finally, it allows valid simultaneous
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inference for all the parameter matrices of the model, thereby avoiding time consuming iterative

updating algorithms.

We develop sufficient stationarity conditions of the copula tensor count autoregressions (1)-(2)

by employing the vector form (4). Let u = (u1, . . . , un)′ denote an arbitrary random vector with

standard uniform marginals and define F−1
h (uh;λh) = F−1

h (uh; g−1(νh)) = F−1
νh

(uh).

S1 The process {ut, xt}t∈Z is strictly stationary and ergodic, and the sequence ut is independent

from {uτ , xτ , τ ≤ t− 1}.

S2 f ◦ F−1
νh

(·) and xt are integrable.

S3 For h = 1, . . . , n, there exists a constant sh > 0 such that for any (νh, ν
∗
h) ∈ R2,

E
∣∣∣f ◦ F−1

νh
(uh) − f ◦ F−1

ν∗h
(uh)

∣∣∣ ≤ sh|νh − ν∗h| .

S4 ρ(|A|eS + |B|e) < 1 where S = diag(s1, s2, . . . , sn).

Proposition 1. Let assumptions S1-S4 hold. Then, there exists a unique solution {yt, νt}t∈Z of

(4) which is stationary and ergodic with E ∥νt∥ < ∞. Moreover, {yt, νt, xt}t∈Z is stationary and

ergodic.

The result follows from Debaly and Truquet (2023, Cor. 1). Condition S1 imposes joint sta-

tionarity and ergodicity of Ut and Xt. It implies that Xt is not necessarily strictly exogenous i.e. Ut

and Xt are allowed to be dependent random variables. As a result, the tensor of interest Yt is not

necessarily independent of Xt conditional on the past Ft−1, and hence contemporaneous dependence

is allowed. A further assumption is that Ut is independent of the past. This condition guarantees

that Yi1...iN ,t conditional on the past has a Poisson distribution with mean Λi1...iN ,t. Conditions

S2-S4 depend on the function f(·). See section 6 below for some relevant examples. Finally, it is

worth noting that the stationarity conditions of the tensor model do not depend on the copula, but

only on the margins.

3.3 Two-stage inference

Here we discuss the estimation of the unknown parameters of the tensor model (1)-(2), denoted

by ψ = (θ′, r′)′ ∈ Rm, where θ = (d′, vec(A1)
′, . . . , vec(AN)′, vec(B1)

′, . . . , vec(QN)′)′ ∈ Rm1 are the

tensor mean parameters, while r ∈ Rm2 are the copula parameters, such that m = m1 + m2. If we
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employ the Gaussian copula described in (3), the multivariate cdf of the vectorized tensor yt takes

the form (5) and its corresponding probability mass function (pmf) can be written as

p(yt;λt, r) =

∫ Φ−1[F1(y1,t;λ1,t)]

Φ−1[F1(y1,t−1;λ1,t)]

· · ·
∫ Φ−1[Fn(yn,t;λn,t)]

Φ−1[Fn(yn,t−1;λn,t)]

ϕr(x1, . . . , xn)dx1 . . . dxn, (6)

where for brevity we let λt = λt(θ) and let ϕr(·) denote the density of a multivariate standard

normal distribution with correlation matrix R, such that r = vech(R).

The full maximum likelihood estimation of ψ is obtained by maximizing the log-likelihood based

on log[p(yt;λt, r)] with respect to its m parameters. Note that with Gaussian copula m2 = n(n−1)/2

and therefore m can grow at speed O(n2) due to the copula parameters. This large dimension of the

parameter vector would adversely affect the finite sample performance of the ML estimator. Hence,

we propose a two-stage estimation, which in the literature is sometimes called Inference Functions

for Margins (IFM); see Joe (2014). In this approach the parameters associated to the means of

the process, θ, are estimated in a first stage by Quasi-Maximum Likelihood (QML) estimation

employing the marginal distributions of the tensor. Next, the copula parameter r is estimated in a

second stage by plugging the first-stage estimated means, say λ̂t, in (6) and maximizing the resulting

log-likelihood function. This approach is popular for copula estimation and is conveniently adopted

for numerical efficiency and feasibility. Indeed, a numerical optimization with many parameters is

replaced by two smaller numerical optimization problems. Furthermore, the estimates of the mean

parameters of the margins will be robust against misspecification of the copula function. The next

two sections describe in detail the estimation procedure and corresponding asymptotic theory of

the above two-stage procedure for the mean and copula related parameters, respectively, for the

new model for integer-valued tensor time series.

4 Estimation of mean parameters

In the two-stage approach, the parameter θ ∈ Rm1 associated to the means of the count tensor

process, Λt(θ), are estimated in a first stage by QML estimation. In this section, we derive the

asymptotic properties of the QML estimator for θ. For notational convenience, we use the vectorized

notation described in section 3.1 where possible, but the results hold equivalently for model (1)-(2)

in tensor form.

The conditional time-varying parameter of the tensor process in vectorized form, νt(θ) =

g(λt(θ)), can alternatively be defined by the following stochastic recurrence equation (SRE):

νt(θ) = hθ
(
yt−1, xt−1; νt−1(θ)

)
, t ∈ Z, (7)
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where hθ(·, ·, ·) is the parametric updating function defined in (4) that maps from Nn × Rn × Rn

into Rn. In the sample, only a subset of the realized path of the process (4), or equivalently (2),

is observed, with true parameter value θ = θ0. Put differently, we only know {yt, xt}Tt=0 where

T is the sample size. Therefore, estimation of the unknown parameters is performed under an

approximation of the time-varying process, say ν̃t(θ), for t ∈ [1, T ], which is obtained recursively by

using the observed tensor data {yt, xt}T−1
t=0 as follows:

ν̃t(θ) = hθ
(
yt−1, xt−1; ν̃t−1(θ)

)
, (8)

where the recursion is initialized at a fixed point ν̃0(θ) ∈ Rn. We note that initializing the recursion

in equation (8) is required, since the observed data start from t = 0. This is a standard procedure

in the literature of observation-driven models. Consequently, the marginal log-quasi-likelihood

employed for the estimation is defined as

L̃T (θ) = T−1

T∑
t=1

l̃t(θ) = T−1

T∑
t=1

n∑
h=1

log
[
ph
(
yh,t; λ̃h,t(θ)

)]
, (9)

where ph(yh,t; λ̃h,t(θ)) for h = 1, . . . , n are the pmfs of conditional Poisson distributions with the

mean process substituted by the proxy λ̃h,t(θ) = g−1(ν̃h,t(θ)). Then, the first-stage Quasi-Maximum

Likelihood Estimator (QMLE) is defined as

θ̂T = arg max
θ∈Θ

L̃T (θ), (10)

where Θ ⊆ Rm1 is the mean parameter space.

4.1 Consistency of QMLE

In order to determine the strong consistency of the QMLE, we first need to derive the stochastic

limit properties of the time-varying parameter ν̃t defined in expression (8). Note that ν̃t(·) is a

stochastic function that maps from Θ into Rn. Due to the initialization, ν̃t evaluated at the true

parameter value θ0, i.e., ν̃t(θ0), generally does not correspond to the true νt = g(λt), where λt is

the true conditional mean. However, we prove that {ν̃t(θ)}t∈N converges exponentially fast almost

surely (e.a.s.) and uniformly in Θ to the stationary and ergodic sequence of functions {νt(θ)}t∈N as

defined in (7), such that νt(θ0) = νt almost surely (a.s.). According to the definition of Straumann

and Mikosch (2006), a sequence of random variables {x̃t}t∈N converges e.a.s. to another sequence

{xt}t∈N if there is a constant δ > 1 such that δt∥x̃t − xt∥ → 0 almost surely as t→ ∞. For a vector

function f : Θ 7→ Rn, the supremum norm is defined as ∥f∥Θ = supθ∈Θ ∥f(θ)∥. Similarly, for a

matrix function F : Θ 7→ Rn1×n2 , |||F |||Θ = supθ∈Θ |||F (θ)|||.
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A1 The conditions S1-S4 hold. Moreover, ρ(AN ⊗AN−1 ⊗ · · · ⊗A1) < 1 for any θ ∈ Θ, where Θ

is compact and θ0 ∈ Θ.

Proposition 2. Let Assumption A1 hold. Then, the sequence {ν̃t(θ)}t∈N converges e.a.s. and

uniformly over Θ to a unique stationary and ergodic sequence {νt(θ)}t∈Z, i.e.,

∥ν̃t − νt∥Θ → 0 (e.a.s.),

as t→ ∞, for any fixed initialization ν̃0(θ) ∈ Rn. Furthermore, {νt(θ)}t∈Z is Ft−1 measurable with

a bounded uniform moment E∥νt∥Θ <∞, and νt(θ0) = νt.

The property stated in Proposition 2 is sometimes called invertibility. It states that the difference

between feasible approximate process (8) based on the arbitrary initialization on the one hand, and

the original process (7) other hand, becomes asymptotically negligible at an exponential rate as we

move away from t = 0. For a vector x ∈ Rp, we write x ≁ 0 to denote that all elements of x are

not 0.

A2 The map g : Rn
+ 7→ Rn is continuous and invertible. Moreover, ∥g−1(ν̃t) − g−1(νt)∥Θ → 0,

e.a.s. as t→ ∞, for any initialization ν̃0(θ) ∈ Rn.

A3 E
∥∥log+(yt)

∥∥ <∞, E ∥λt∥Θ <∞, E ∥y′t log(λt)∥Θ <∞.

A4 There exists a constant vector λ > 0, such that the function (θ, ν) 7→ g−1 ◦ hθ(y, x; ν) is

uniformly lower-bounded, i.e., g−1 ◦ hθ(y, x; ν) ≥ λ for any (θ, y, x, ν) ∈ Θ × Nn × Rn × Rn.

A5 Condition I holds for A, B and Q for any θ ∈ Θ. Furthermore, |Bs|e1 ≁ 0 or |Qs|e1 ≁ 0 at

θ = θ0, for any s = 1, . . . , N .

Condition A2 is needed, together with the results of Proposition 2, to ensure that our computable

log-likelihood (9) that depends on the approximate process λ̃t = g−1(ν̃t), converges to a stationary

and ergodic limit LT (θ) = T−1
∑T

t=1 lt(θ) = T−1
∑T

t=1

∑n
h=1 log[ph(yh,t;λh,t(θ))], where the latter

depends on the limit sequence λt = g−1(νt) rather than on its initialized counterpart. Assump-

tion A3 is a standard moment condition, which guarantees that the limiting log-likelihood LT (θ)

converges to the expected log-likelihood L(θ) = E[lt(θ)], uniformly over the compact Θ. Assump-

tion A4 imposes a lower bound on the updating function, such that the vectorized tensor mean

and its proxy are lower-bounded, i.e., λh,t(θ) ≥ λL, λ̃h,t(θ) ≥ λL for any θ ∈ Θ, and t = 1, . . . , T ,

where λL = minh=1,...,n λh and λh is a single element of λ. Finally, condition A5 is an identification

condition. The first part requires that the parameter matrices for the mean dynamics are identi-

fied. The second part implies that the time-varying parameter νt is not degenerate. Indeed, we will
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show that when νt is a degenerate random variable, then the set of matrices A in model (2) is not

identifiable. Together, these two conditions determine the identifiability of the tensor mean, i.e.,

the tensor process Λt(θ) generates a different tensor path for each θ ̸= θ0 and Λt(θ) = Λt(θ0) if and

only if θ = θ0.

Theorem 2. Let Assumptions A1-A5 hold true. Then the QMLE defined in (10) is strongly

consistent, i.e., θ̂T → θ0 almost surely as T → ∞.

4.2 Asymptotic normality of QMLE

In this section we derive the asymptotic normality of the QML estimator. For first and second

derivatives of a scalar function f(·) with respect to a vector parameter γ, we use the notation

∇γf = ∂f(γ)/∂γ and ∇2
γf = ∂2f(γ)/∂γ∂γ′.

A6 The map g : Rn
+ 7→ Rn is twice continuously differentiable. Moreover, θ0 ∈ Θ̇ where Θ̇ is the

interior of Θ.

A7 For any h = 1, . . . , n,

∥∇ν̃h,tg
−1 −∇νh,tg

−1∥Θ → 0 ,

e.a.s. as t→ ∞, for any initialization ν̃0(θ) ∈ Rn. Moreover,

E
(
log+ ∥∇θλh,t∥Θ

)
<∞ , E

(
log+

∥∥∇νh,tg
−1
∥∥
Θ

)
<∞ .

A8 The elements of (y′t, x
′
t)

′ are linearly independent random variables. Moreover, at θ = θ0, A
(N)
11 ,

B
(N)
11 and Q

(N)
11 are different from 0.

A9 For any h, l = 1, . . . , n, with h ̸= l,

E(y2h,t) <∞ , E
∣∣∣∣∣∣∇θλh,t∇θλ

′
h,t

∣∣∣∣∣∣2
Θ
<∞ , E

∣∣∣∣∣∣∇2
θλh,t

∣∣∣∣∣∣2
Θ
<∞ , E

∣∣∣∣∣∣∇θ0λh,t∇θ0λ
′
l,t

∣∣∣∣∣∣ <∞ .

Condition A6 allows the tensor mean process λt(θ) to be differentiable up to second order. Moreover,

it implies that the derivative of the limit objective function will be zero at θ0. Assumption A7

together with the results of Proposition 2 guarantees that for the score of the log-quasi-likelihood the

starting value of the initialized series ν̃0(θ) is asymptotically negligible. Condition A8 is the tensor

analogue of the classical linear independence assumption, which is required to obtain a positive

definite Hessian matrix. Finally, Condition A9 is a standard moment condition that ensures the

existence of the asymptotic Hessian and Fisher information matrices, H(θ0) and I(θ0), respectively,

which are defined below.
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Theorem 3. Let Assumptions A1-A9 hold true. Then the QMLE defined in (10) is asymptotically

normal, i.e., √
T
(
θ̂T − θ0

)
d−→ N (0,Σ) , (11)

as T → ∞, where

Σ = H−1(θ0)I(θ0)H
−1(θ0) , H(θ0) = −E

(
∇2

θ0
lt
)
, I(θ0) = E (∇θ0lt ∇θ0l

′
t) ,

and Σ is positive definite.

5 Estimation of copula parameters

5.1 Definition of the estimator and consistency result

In this section we prove the consistency of the second-stage estimator of the copula correlation

parameter r = vech(R) based on the Gaussian copula pmf as defined in (6) and obtained by

plugging-in the first-stage estimates of the vectorized tensor means λ̂t = λt(θ̂T ), where θ̂T is the

first-stage QMLE of θ. The resulting estimator is called the Two-Stage Maximum Likelihood

Estimator (2SMLE). The corresponding second-stage log-likelihood is defined as

LT (θ̂T , r) = T−1

T∑
t=1

lt(θ̂T , r) = T−1

T∑
t=1

log
[
p
(
yt; λ̂t, r

)]
, (12)

and the 2SMLE as

r̂T = arg max
r∈Pv

LT (θ̂T , r) , (13)

where P is the space of all possible correlation matrices and Pv ⊆ Rm2 is the space of vectorized

(strictly lower triangular half) of the correlation matrices in P. Let R0 denote the true correlation

matrix of the Gaussian copula and r0 = vech(R0). Moreover, for a vector function f : Θ 7→ Rn, let

∥f∥p,Θ = supθ∈Θ ∥f(θ)∥p.

B1 Pv is compact and r0 ∈ Pv.

B2 E∥λt∥22,Θ <∞.

Theorem 4. Let assumptions A1-A5 and B1-B2 hold true. Then the 2SMLE defined in (13) is

strongly consistent, i.e., r̂T → r0 almost surely as T → ∞.
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Remark 1. (Identification of R) Following Genest and Nešlehová (2007), when coupling a copula

with discrete marginals, the copula is not unique, meaning that the same joint cdf can be gener-

ated using a different copula function with the same discrete marginals, but estimation of copula

parameters remains possible if these are identifiable. In Lemma C.9 we show that the correla-

tion parameters for the Gaussian copula (3) are identified in the tensor model (1)-(2), leading to

consistent second-stage estimates of R.

Remark 2. (Interpretation of R) Note that when copulas are employed with discrete pmfs, the

copula parameters can still be interpreted as dependence parameters (Genest and Nešlehová, 2007).

In particular, the Gaussian copula (3) implies that the conditional distribution of (ui,t, uj,t)
′ follows

a bivariate Gaussian copula with correlation parameter Rij being the (i, j) entry of R. Therefore, by

the results of Genest and Nešlehová (2007, Sec. 5.2) and the Hoeffding’s covariance identity, we have

that the pairwise (i, j) conditional covariance of the counts, say Cov(yi,t, yj,t|Ft−1), is increasing with

respect to Rij. Moreover, by the same arguments and Genest and Nešlehová (2007, Prop. 11), the

sign of Rij equals to the sign of the respective (i, j)th conditional covariance. Therefore, although

Rij does not correspond to the conditional pairwise correlation of (yi,t, yj,t), its sign and relative

comparison can still be interpreted with respect to the true conditional correlations. By this we

mean that if Rij < Rik, then the conditional correlation for pair (i, k) is higher than that of (i, j).

The results of Sections 4 and 5 fill a crucial gap in the existing literature by offering a theoretical

foundation for tensor count time series models. To the best of our knowledge, this is the first

asymptotic theory result established for integer-valued tensor time series processes. Additionally,

our result covers an existing gap within the classical framework of multivariate time series. Previous

literature has described the asymptotic theory regarding QMLE-2SMLE in the context of mixed

multivariate time series models (Debaly and Truquet, 2023). However, the result for the QMLE

was stated without proof and does not directly extend to tensors.

5.2 Feasibility in large tensor dimensions

The computation of the second-stage likelihood based on the pmf (6) requires the numerical evalua-

tion of n = n1n2 · · ·nN integrals and its optimization with respect to n(n−1)/2 copula parameters.

The evaluation of multi-dimensional integrals is numerically time-consuming and may easily result

in a numerically infeasible or impractical algorithm. In this section we propose two procedures to

guarantee a feasible estimation of the correlation matrix R when the tensor dimensions are large.

Specification (i): Reduction of the parameter space. An immediate solution is to constrain the

structure of R in order to decrease the dimension of the parameter vector r. For example, a simple
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and effective structure would be R = RN ⊗ RN−1 ⊗ · · · ⊗ R1 with Rs = rsIns + (1 − rs)Jns , where

Jns ∈ Rns×ns denotes the unit matrix. Indeed, according to (3) and by recalling that ut = vec(Ut), we

have Φ−1(ut)|Ft−1 ∼ N(0, RN⊗RN−1⊗· · ·⊗R1) with the function Φ−1(·) applied elementwise. This

is equivalent to assuming Φ−1(Ut) = Z̄t×1R
1/2
1 ×2 · · · ×N R

1/2
N , where Z̄t is a tensor whose elements

have zero mean, unit variance, and are uncorrelated, such that vec(Z̄t)|Ft−1 ∼ N(0, In). This

structure reproduces the data tensor structure in the correlation matrix. Intuitively, Rs corresponds

to the mode s interactions, for s = 1, . . . , N . Therefore, the proposed structure can be called a

tensor equicorrelation model as it induces for each tensor dimension an equicorrelation structure

with equicorrelation parameter rs ∈ (−1/(ns−1), 1) for s = 1, . . . , N . Moreover, note that the set of

matrices R = {Rs}Ns=1 satisfies condition I by definition. Therefore, the parameters rs are identified.

Finally, the additional constraint rs > −1/(ns − 1) ensures the positive definiteness of Rs, for

s = 1, . . . , N , and therefore guarantees that R is a valid correlation matrix. We see in the application

section 7 that the parameters rs can be interpreted as s-mode dependence parameters. The tensor

equicorrelation form allows us to reduce the number of copula parameters from n(n− 1)/2 to only

N . Alternatively, a further reduction of the copula parameter space to a single parameter r̄ can be

considered by specifying an equicorrelation structure R = r̄In + (1− r̄)Jn, with r̄ ∈ (−1/(n− 1), 1).

Specification (ii): Numerical approximation of the likelihood. Although the previous approach allows

us to reduce the parameters space, the optimization of the likelihood based on the multidimensional

integral (6) may still be numerically unfeasible when N and/or ns grow. To avoid the costly

evaluations of the copula pmf in equation (6), we employ a fast numerical approximation. Using

basic properties of integrals, the copula pmf can be rewritten as the integral of the copula density

over a hyper-rectangular region:

p(yt;λt, r) =

∫ F1(y1,t;λ1,t)

F1(y1,t−1;λ1,t)

· · ·
∫ Fn(yn,t;λn,t)

Fn(yn,t−1;λn,t)

c(u1, . . . , un; r)du1 . . . dun,

where for brevity we again let λt = λt(θ), and where c(u1, . . . , un; r) denotes the Gaussian copula

density function with correlation parameters r. We approximate this integral by using the midpoint

rule, obtaining the volume of the n-dimensional rectangular region times the value of the copula

density evaluated at the midpoint of the same region, i.e.

p(yt;λt, r) ≈ p̂(yt;λt, r) = c(u∗1,t, . . . , u
∗
n,t; r)

n∏
h=1

[Fh(yh,t;λh,t) − Fh(yh,t − 1;λh,t)]

= c(u∗1,t, . . . , u
∗
n,t; r)

n∏
h=1

ph(yh,t;λh,t) ,

where u∗h,t = 0.5 [Fh(yh,t − 1;λh,t) + Fh(yh,t;λh,t)] are the midpoints for h = 1, . . . , n. Therefore,

the approximated second-stage log-likelihood with respect to the copula parameters r would be
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L̂T (θ̂T , r) = T−1
∑T

t=1 log[p̂(yt; λ̂t, r)], but the univariate pmfs can be neglected since they do not

contain the copula parameters. Therefore, by recalling that r = vech(R), we have

L̂T (θ̂T , r) = T−1

T∑
t=1

log[c(û∗1,t, . . . , û
∗
n,t; r)] = −1

2
log |R| +

1

2T

T∑
t=1

ω̂′
t

(
In −R−1

)
ω̂t , (14)

where ω̂t = (ω̂1,t, . . . , ω̂n,t)
′, ω̂h,t = Φ−1(û∗h,t) and û∗h,t = 0.5

[
Fh(yh,t − 1; λ̂h,t) + Fh(yh,t; λ̂h,t)

]
. The

approximation (14) leads to a substantial decrease in computational costs. Furthermore, in the case

of (tensor) equicorrelation, it is possible to derive analytical expressions for the determinant and

inverse of the correlation matrix. This yields further computational advantages. See Theorems 8.3.4

and 8.4.4 in Graybill (1983).

When the interest is in obtaining a feasible estimate of the full unconstrained correlation ma-

trix R, the optimization problem is cumbersome and the number of correlation parameters to be

estimated is too high. In these cases, it is possible to obtain an approximate solution that does not

require any optimization. Indeed, if we maximize (14) with respect to the space of all covariance

matrices, this maximization problem has the following analytical solution

r̂ = vech(R̂) , R̂ = T−1

T∑
t=1

ω̂tω̂
′
t, (15)

which is the MLE of the covariance matrix R for the standard normal likelihood of the variables ω̂t.

Although the use of the estimator (15) does not guarantee a valid correlation matrix, in practice R̂

is likely to be close to being a correlation matrix. Then, we can take the adjusted estimator

r̃ = vech(R̃) , R̃ = ∆̂−1R̂∆̂−1 (16)

where ∆̂ = diag(R̂)1/2 is a diagonal matrix constructed by taking the square root of the elements in

the main diagonal of R̂. This approximate solution to the original problem is a convenient option

for obtaining a feasible estimate of the whole correlation matrix without constraints. Moreover, the

adjusted estimator is in general available for any arbitrary tensor order and dimension since it does

not require any optimization.

In Section 6 we show by means of Monte Carlo simulation experiments that the approximation

methods work well for linear and log-linear copula tensor count autoregressions. Moreover, in

Section 7 we confirm using real empirical data that optimization based on the approximate likelihood

produces estimates that are almost identical to those based on the true likelihood. To the best

of our knowledge, we have not seen similar suggestions elsewhere in the literature to keep the

computational burden of copula-based count tensor models feasible in high dimensions.
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6 Copula tensor INGARCHX models

6.1 Examples of model designs

The dynamics described in the tensor model (1)-(2) specify a general class of tensor time series

models through the choice of the link functions g, f . In this section we present some specific models

of interest that are embedded in (2) and formulate their asymptotic theory results under low-level

conditions.

An intuitive and simple way to specify the conditional tensor mean Λt is to consider a linear

autoregressive process driven by past observations. Count processes with a linear specification of

the conditional mean are often referred to in the literature as INGARCH models (Ferland et al.,

2006). Let f and g be the identity mapping. We then define the copula tensor INGARCHX model

by coupling the process (1) with the following dynamical mechanism,

Λt = D + Λt−1 ⋆A + Yt−1 ⋆B + Xt−1 ⋆Q, (17)

for t ∈ Z. This is a generalization of the multivariate INGARCH model (Fokianos et al., 2020) to

multidimensional count time series, with the addition of exogenous regressors. Model (17) introduces

linear dynamics in the time-varying mean parameters. In order to guarantee the almost sure

positivity of conditional Poisson means, all the mean parameters and the exogenous regressors

should be non-negative. The copula tensor INGARCHX model retains the vectorized notation

yh,t = F−1
h (uh,t;λh,t) , 1 ≤ h ≤ n , λt = d+ Aλt−1 +Byt−1 +Qxt−1 , (18)

for t ∈ Z, which is a special case of (4) with the same Kronecker product-type restrictions on the co-

efficient matrices. Recall that the mean parameters are θ = (d′, µ′)′, with µ = (vec(A1)
′, . . . , vec(QN)′)′,

with true value θ0 = (d′0, µ
′
0)

′ and µ0 = (vec(A0,1)
′, . . . , vec(Q0,N)′)′.

Theorem 5. Let the series {yt}Tt=0 be generated by model (18) with parameter value ψ0 = (θ′0, r
′
0)

′,

{ut, xt}t∈Z satisfying S1, xt ≥ 0 a.s. for any t ≥ 0, and E∥xt∥p < ∞ for p ≥ 1. Furthermore, let

θ0 ∈ Θ, where Θ is a compact parameter set such that d > 0, µ ≥ 0, ρ(A) < 1 for any θ ∈ Θ,

condition A5 is satisfied, and ρ(A0 + B0) < 1. Then, the QMLE is strongly consistent. Assume

further that r0 ∈ Pv where Pv is compact. Then, the 2SMLE is strongly consistent. Moreover,

assume that that condition A8 is satisfied, and θ0 ∈ Θ̇. Then, the QMLE is asymptotically normal.

The tensor model (17) does not allow one to estimate negative tensor coefficients and to intro-

duce exogenous covariates that can also take negative values. This may be problematic for some
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empirical datasets. Therefore, we also propose a copula tensor log-linear INGARCHX model, which

is specified by coupling (1) with

log(Λt) = D + log(Λt−1) ⋆A + log(Yt−1 + 1) ⋆B + Xt−1 ⋆Q , (19)

for t ∈ Z, which is obtained from (2) by setting g(·) = log(·) and f(·) = log( · + 1). Clearly, model

(19) does not suffer from the limitations of the linear model and its vectorized version is defined for

t ∈ Z as

yh,t = F−1
h (uh,t;λh,t) , 1 ≤ h ≤ n , log(λt) = d+ A log(λt−1) +B log(yt−1 + 1) +Qxt−1 . (20)

Theorem 6. Let the series {yt}Tt=0 be generated by model (20) with parameter value ψ0 = (θ′0, r
′
0)

′,

{ut, xt}t∈Z satisfying S1, and E [exp(p∥xt∥)] < ∞ for p ≥ 1. Furthermore, let θ0 ∈ Θ, where Θ is

a compact parameter set such that ρ(A) < 1 for any θ ∈ Θ, conditions A4-A5 are satisfied, and

||||A0|e + |B0|e|||∞ < 1. Then, the QMLE is strongly consistent. Further assume that r0 ∈ Pv where

Pv is compact. Then, the 2SMLE is strongly consistent. Moreover, assume that condition A8 is

satisfied, and θ0 ∈ Θ̇. Then, the QMLE is asymptotically normal.

By employing a backward substitution argument, it is straightforward to prove that a sufficient

condition for A4 to hold for the log-linear model is that the parameter matrices {A,B,Q} and the

covariates xt in (20) have non-negative entries.

6.2 Monte Carlo simulations

We investigate the finite sample properties of QMLE and 2SMLE by means of Monte Carlo simu-

lation experiments. We generate 1000 samples from the copula tensor INGARCH model (1) plus

(17) for several sample sizes (T = 500, 1000, 2000). The tensors are generated with order N = 2

and dimensions n1 = n2 = 2. The Gaussian copula is employed with an equicorrelation structure,

where r̄ = 0.5. The tensor mean parameters are estimated using the QMLE (10). The first-stage

estimated tensor means in Λ̂t are subsequently plugged-in the 2SMLE (13) for the estimation of

the copula parameter. In the second stage we optimize the approximated likelihood (14) to test

its effectiveness in finite samples. The data are generated with the following set of true parameter

values d = (0.5, 0.667, 0.833, 1)′,

A1 =

(
1 0.2

0.15 0.3

)
, A2 =

(
0.3 0.2

0.175 0.2

)
, B1 =

(
1 0.2

0.15 0.3

)
, B2 =

(
0.3 0.25

0.2 0.25

)
.

The values of A
(1)
11 and B

(1)
11 are set to 1 to satisfy the identification constraint I and are thus not

estimated.
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Figure 2: Kernel density estimator for the distribution of the 2SQML estimates for the copula tensor INGARCH

model with equicorrelation structure obtained from 1000 Monte Carlo replications for sample sizes 500 ( ), 1000

( ) and 2000 ( ), true parameter value ( ); the bandwidth of the kernel is selected by using Silverman’s

rule of thumb.

Figure 1 reports the kernel density of the QML estimates for the remaining parameters. The

results confirm that the estimates are consistent, as their distributions collapse towards the true

parameter values as the sample size increases. Furthermore, the distributions of the QML estimators

seem symmetric for almost all parameters, in particular at larger sample sizes. This suggests

that the asymptotic normal distribution is an accurate approximation. Figure 2 shows the kernel

density of the 2SQML estimate for the copula parameter. The empirical distribution shows a

slight bias, which is expected due to the uncertainty of the first-stage estimates and the use of

the approximate likelihood. Nevertheless, the bias is minimal and the consistency of the second-

stage estimate is confirmed given the distribution collapses towards the true parameter value as

the sample size increases. These conclusions are also supported by further simulation results given

in the supplementary material, together with an analogous simulation study for the copula tensor

log-linear INGARCH model.

7 Empirical application

In this section, we present an empirical application to a 2-order tensor of monthly police report

counts for five types of theft-related crimes (n1 = 5) in five different cities of Australia (n2 = 5), for

a total of n = n1n2 = 25 time series. The tensor time series is from January 1995 to March 2024

(Figure 3) and is part of the New South Wales (NSW) data set of police reports1 with geographic

breakdown by local government areas (LGA). The cities were chosen based on similar population

sizes. Together they form the most populated LGAs in the Sydney metropolitan area. Plots of

the autocorrelation functions of the series (reported in the supplementary material) reveal high

1Data available at https://bocsar.nsw.gov.au/statistics-dashboards/open-datasets/

criminal-offences-data.html
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Figure 3: Monthly number of police reports for five theft-related crimes (Receive: Receiving or handling stolen

goods; Motor: Steal from motor vehicle; Retail: Steal from retail store; Dwell: Steal from dwelling; Person: Steal from

person) in five cities of Australia (Blacktown; Canterbury-Bankstown; Liverpool; Northern Beaches; Parramatta)

from January 1995 to March 2024.

autocorrelations for the crime counts time-series. Therefore, tensor INGARCH dynamics seem

particularly suited to describe the autocorrelation structure of the data.

Since the tensor order is N = 2, the modelling approach is encompassed by the family of

copula tensor count autoregressions (A-1)-(A-2) described in Appendix A. In this case, recall that

Yt = (Yij,t) is an n1 × n2 matrix of crime count time series and Λt = (Λij,t) the corresponding

matrix of conditional Poisson means. To further reduce the parameter dimensionality and simplify

the model, we specify the tensor INGARCH dynamics as

Λt = D + αΛt−1 +B1Yt−1B
′
2 , (21)

log(Λt) = D + α log(Λt−1) +B1 log(Yt−1 + 1)B′
2 , (22)

which are special cases of (A-2) with A1 = A2 =
√
αI5, where α is a scalar. Spillovers between

the Poisson conditional means are now captured via the realized counts in Yt−1. By employing
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backward substitution, model (21) can be written as

Λt =
∞∑
k=0

αk (D +B1Yt−1−kB
′
2) .

The conditional tensor mean thus depends on the infinite past of all the series of the tensor Yt,

with full matrices of coefficients B1, B2 whereas the coefficient α establishes the rate at which such

temporal dependence vanishes over time. In this way, the model specified in (21) preserves the

whole path of autoregressive tensor effects, while assuming that the time series under consideration

have a common decay rate of the past dynamics, defined by α. A similar recursion applies to

the log-linear model (22). Analogous simplifying assumptions are often encountered in empirical

applications of multivariate time series models to further reduce the computational complexity of

the model, especially when the number of series is large; see for example Engle (2002), Heinen and

Rengifo (2007) and Opschoor et al. (2018), among others.

We use the data until December 2022 for the estimation of the model. The rest of the dataset

is used for out-of-sample analysis. As we see later, the log-linear dynamic specification in (22)

provides a better fit to the data than the linear specification. To save space, we therefore only

present the full first-stage estimation results for the log-linear model and postpone the estimation

results for the linear model to the supplementary material. From first-stage QML estimation of the

linear model, the estimated tensor effects are
α̂ = 0.614∗, and

B̂1 =



Receive Motor Retail Dwell Person

Receive 1.000 −0.075 0.019 0.365∗ 0.005

Motor 0.005 1.190∗ 0.025 0.081∗ 0.037∗

Retail 0.004 −0.006 1.121∗ −0.080∗ −0.004

Dwell 0.013 0.101∗ −0.009 1.160∗ −0.019

Person −0.052 0.099∗ −0.078 0.023 1.271∗

, B̂2 =



Black. Cant. Liv. North. Parra.

Black. 0.246∗ 0.004 0.026∗ 0.005 −0.014∗

Cant. 0.001 0.293∗ 0.016∗ −0.008 0.003

Liv. 0.001 0.038∗ 0.231∗ −0.002 0.013∗

North. 0.019∗ 0.055∗ 0.000 0.234∗ 0.011

Parra. 0.015∗ 0.042∗ 0.005 −0.005 0.243∗



with the model allowing for negative coefficients. Asterisks denote all the coefficients significantly

different from 0 at 5% level. The significance tests are based on standard errors obtained by

computing the sample counterparts of the asymptotic covariance of the QMLE.2 The significant

interactions in the model can be interpreted as Granger-causality effects. The interpretation of

the estimated matrices of coefficients is similar to the one described in Appendix A. Hence, B̂1

captures the row-wise dynamics, i.e., the interaction between different types of crimes, whereas B̂2

2In linear models the null hypothesis H0 : θi = 0 is defined at the boundary of the parameter space for the non-

intercept coefficients. Therefore, the asymptotic normal distribution of the t test requires a correction. Following

Ahmad and Francq (2016, Rem. 2.4) and Francq and Zakoian (2019, Sec. 8.3.3) this is equivalent to employing the

rejection region |t| > Φ−1(1 − α) instead of the usual |t| > Φ−1(1 − α/2), where α is the significance level. We use

this correction for testing significance of parameters in the tensor INGARCH model (21).
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captures the column-wise dynamics, i.e., interactions between cities. The bilinear matrix product

in model (21) then combines the row-wise and column-wise interactions. Note that B
(1)
11 is set to

1 for identification. All the other coefficients on the main diagonals of both B(1) and B(2) are

significant and show the largest magnitude. This is reasonable. We expect the largest impact on

the conditional mean of a particular crime count to be the most recent realized experience of that

same crime type. The same holds for the effect of cities: the most important predictor of the

conditional mean in a city is the recent crime experience in that same city. However, we also see

several significant spillover effects by looking at the off-diagonal elements. Most of these are quite

small compared to the diagonal elements. However, there is a strong positive spill-over from stealing

from dwellings to crimes related to receiving and handling stolen goods. This makes intuitive sense.

We also see several spillovers between cities, though these are typically quite modest with respect

to the diagonal elements, i.e., the same-city feedback. Still, the biggest LGA for population, which

is Canterbury-Bankstown, has an autoregressive impact on almost all the closer districts. Northern

Beaches, by contrast, being the farthest district, only seems to have a dynamic impact on its own

next-month crime count, without spillovers to the other districts. Finally, we note that the crime

times series are significantly affected by the more remote past since the (autoregressive) decay

coefficient α̂ = 0.614 is large and significant.

To examine the model fit, we consider the Pearson residuals, defined by Eij,t = (Yij,t−Λij,t)/
√

Λij,t

for i = 1, . . . , n1 and j = 1 . . . , n2. Under the correct model, the sequence Eij,t is a white noise se-

quence with constant variance. We substitute Λij,t by Λ̂ij,t to obtain Êij,t. We compute the Pearson

residuals for both the linear and log-linear tensor model and examine their autocorrelation func-

tions (ACF). This reveals that the models are generally able to capture the serial correlations of

the time series simultaneously, leading to relatively clean ACF plots of the residuals (as reported

in the supplementary material).

Using the parameters estimated in the first stage, we can use the fitted matrix conditional mean

Λ̂t to estimate the Gaussian copula parameters in a second-stage estimation. We specify three

different structures for the Gaussian correlation matrix R: equicorrelation (e), tensor equicorrelation

(te), and full unstructured (full). For the first two structures, the 2SMLE (13) is obtained by

maximizing the true log-likelihood computed using the full pmf (6). We also compute estimates

by optimizing the approximate log-likelihood (14). The results are almost identical, however, and

therefore not reported. Since n = 25, the direct optimization for the full correlation case is unfeasible

as it involves estimating n(n− 1)/2 = 300 correlation parameters. We therefore estimate R for this

case by using the adjusted estimator (16).

Table 1 reports the estimates of the correlation parameters. We see that the copula parameter
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Table 1: Estimated correlation parameters for the Gaussian copula obtained from 2SMLE with first-stage estimates

computed by QMLE of tensor INGARCH models (21)-(22). For the full correlation matrix the adjusted estimator

was used and reported minimum, average and maximum for the lower triangle of the estimated matrix R̃.

Models Equi. Tensor equi. Full

ˆ̄r r̂1 r̂2 r̃min r̃avg r̃max

Linear 0.024 0.036 0.065 -0.167 0.050 0.231

Log-linear 0.024 0.037 0.063 -0.170 0.049 0.238

estimates are quite close for the linear and the log-linear specification. To interprete the tensor

equicorrelation coefficients, note that R = R2 ⊗ R1. For space constraints, consider an example

with only 2 crimes (a, b) and 2 cities (A, B). As in Figure 3, we put crimes in the row dimension,

and cities in columns. Then, the vectorized tensor yt = (yaA,t, ybA,t, yaB,t, ybB,t)
′, and its Probability

Integral Transforms (PITs) have a Gaussian copula with (copula) correlation matrix R, where

R1 =

(
1 r1

r1 1

)
, R2 =

(
1 r2

r2 1

)
, R = R2 ⊗R1 =



aA bA aB bB

aA 1 r1 r2 r1r2

bA r1 1 r1r2 r2

aB r2 r1r2 1 r1

bB r1r2 r2 r1 1

 .
We see that r1 corresponds to the conditional correlation of two different crimes occurring in the

same city, while r2 is the conditional correlation of the same crime committed in two different cities.

The cross-product r1r2 picks up the conditional correlation of two different crimes happening in

two different cities, i.e., the conditional copula correlation between two time series is the cumula-

tive product of the equicorrelations for the dimensions in which their coordinate differs. Table 1

shows that both the equicorrelations between crime types and between cities are positive, with the

correlation of same crime type among different cities being larger than the correlation for different

crimes in the same city. Comparing the tensor equicorrelation model to the equicorrelation model,

we see that the copula correlations for the tensor equicorrelation model are higher within a crime

type (for a given city) than in the equicorrelation model. The same holds for the copula correla-

tions within a city (given the crime type). However, if both the crime type and the city differ, the

copula correlations in the tensor equicorrelation model are actually on order of magnitude smaller

(0.036 × 0.065 ≈ 0.0023 < 0.024) than in the equicorrelation specification. Note that following

Remark 2, the copula correlations shown in Table 1 are not equal to the conditional correlations

for the original crime counts time series. Still, although the estimated equicorrelations ˆ̄r, r̂1, r̂2 and

the average adjusted correlation r̃avg appear modest, we see later in Table 2 below that including
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the copula-based pmf as computed for the tensor model greatly improves both the in-sample fit and

the density forecasts of crime tensor data compared to the case in which the likelihood is based on

only the marginals. Hence, there appears to be a contemporaneous dependence among the crime

times series that is successfully accounted for by the copula tensor model.

Table 2 reports several measures of in-sample fit and forecasting accuracy for the estimated

models. The performances of the first-stage estimates of the tensor INGARCH models (21)-(22)

are denoted by QMLE, whereas the accuracy of the second-stage estimates that use the Gaussian

copula with three different specifications for the copula correlation matrix are denoted by 2SMLEe,

2SMLEte, and 2SMLEfull, respectively. As a further benchmark, we also perform an alternative

first-stage estimate by specifying univariate INGARCH models of the form

Λij,t = Dij + αijΛij,t−1 + βijYij,t−1 , log(Λij,t) = Dij + αij log(Λij,t−1) + βij log(Yij,t−1 + 1) ,

for each crime time series i = 1, . . . , n1 in each city j = 1, . . . , n2. In this case each series has its own

autoregressive and feedback effect, but no interaction coefficients are estimated among the series.

The Poisson likelihood is used for each univariate model, such that the total log-likelihood is equal

the one used for the QMLE defined in (9). The accuracy measures of this alternative modelling

procedure are denoted by QMLEuni.

To evaluate the in-sample fit, we employ three indicators. The quantity maxL is the maximum

average log-likelihood computed at the estimated values. The Akaike and Bayesian information

criteria (AIC, BIC) are computed at the same optimum. To evaluate the out-of-sample forecast

accuracy, we use the mean absolute error (MAE) and the log-score criterion (LS). The MAE is

used to measure the accuracy of point forecasts. The log-score criterion is used to measure the

accuracy of pmf forecasts (Geweke and Amisano, 2011). The latter two measures are obtained

from a one-step-ahead forecast study where the observed data {Yt}Tt=1 is split into an in-sample

dataset from t = 1 to t = T ∗, and an out-of-sample dataset from t = T ∗ + 1 to t = T . We set

T ∗ to December 2022. The prediction of each observation in the out-of-sample dataset is obtained

by estimating the models with all previous observations. In particular, the point prediction of the

vectorized tensor yt = vec(Yt) at time t = τ is given by λ̂τ (θ̂τ−1), where θτ−1 denotes the QML

estimate of θ using the data from t = 1 to t = τ − 1. The pmf prediction of yt at time t = τ is

given by
∏n

h=1 ph(yh; λ̂h,τ (θ̂τ−1)), yh ∈ N, for the QMLE and by p(y; λ̂τ (θ̂τ−1), r̂τ−1), y ∈ Nn, for the

2SMLE where r̂τ−1 are the 2SQML estimates of copula parameter r using data up to time t = τ−1.

Finally, the MAE and LS are obtained as

MAE =
1

T − T ∗

T∑
t=T ∗+1

n∑
h=1

|yh,t − λ̂h,t(θ̂t−1)| ,
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Table 2: Performance measures of QML and 2SQML estimates of linear (top) and log-linear (bottom) models for

the crime dataset. The columns contain the maximized average log-likelihood (maxL), AIC, BIC, MAE and log-score

criterion (LS). Best results in bold.

Models maxL AIC BIC MAE LS

QMLE -106.602 71573.295 71859.355 8.486 -1436.365

QMLEuni -107.274 72023.450 72309.510 8.657 -1454.406

2SMLEe -106.012 71030.305 71034.119 - -1336.548

2SMLEte -105.751 70857.487 70865.116 - -1328.743

2SMLEfull -105.766 71463.016 72607.255 - -1353.276

QMLE -106.300 71371.193 71657.253 8.474 -1437.837

QMLEuni -107.737 72333.883 72619.943 8.689 -1457.628

2SMLEe -105.700 70820.784 70824.598 - -1336.619

2SMLEte -105.454 70658.056 70665.684 - -1328.605

2SMLEfull -105.423 71233.702 72377.941 - -1350.611

and

LSQMLE =
T∑

t=T ∗+1

n∑
h=1

log
[
ph(yh,t; λ̂h,t(θ̂t−1))

]
, LS2SMLE =

T∑
t=T ∗+1

log
[
p(yt; λ̂t(θ̂t−1), r̂t−1)

]
.

Regarding the QMLEs, the results show that the tensor INGARCH specifications give a better

in-sample fit. The they have bigger values of maxL and lower values for AIC and BIC compared

to the univariate INGARCH models. When the tensor INGARCH models are used as a first-

stage plug-in, the best second-stage estimates are provided by 2SMLE with tensor equicorrelation

structure as it has lower AIC and BIC. All the two-stage estimators show a better in-sample fit with

respect to the first-stage QMLEs. More accurate point forecasts are obtained by the tensor model

against the univariate specifications, whereas the best pmf forecast occurs with the 2SMLEte, which

has the largest log-score (LS).

In the density forecast study (LS column), all the two-stage estimators outperform the QMLEs

by a wide margin. The resulting overall best model from both in-sample and out-of-sample analysis

is the copula tensor log-linear INGARCH model with tensor equicorrelation. Finally, note that the

tensor equicorrelation specification always seems to provide the best performance against alternative

specifications. This can be due to a threefold effect: (i) ability to reproduce the data tensor structure

in the correlation matrix with (ii) a more flexible, empirically required structure compared to the

standard equicorrelation model, while (iii) retaining parsimony compared to the specification with

a fully unstructured correlation matrix.
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Summarizing, the empirical findings of this section indicate that count tensor models are power-

ful tools capable of modeling dynamic spillover effects and interconnections among multidimensional

time series in a parsimoninous way (as the specifications (21)-(22) have the same number of param-

eters of the univariate INGARCH counterparts). Such an analysis is not achievable with existing

univariate/multivariate modelling approaches. Moreover, by keeping the same number of parame-

ters as in univariate specifications, these models are able to provide better in-sample fit and deliver

more accurate out-of-sample predictions. Finally, the inclusion of copula-based joint distributions

in tensor models further improves goodness-of-fit and density forecast accuracy. This suggests that

the copula tensor count autoregressions proposed in this contribution are able to handle both con-

temporaneous and lagged dependence among a large set of count times series and successfully model

complex inter-relations in multidimensional datasets.
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Appendix A Copula matrix count autoregressions

In the special case N = 2 the sequence of tensors introduced in Section 3 reduces to Yt = (Yij,t)

being a n1 ×n2 matrix time series of counts and Xt is a n1 ×n2 matrix of exogenous covariates. By

(1) each element of the matrix satisfies, for t ∈ Z,

Yij,t = F−1
ij (Uij,t;Λij,t) , 1 ≤ i ≤ n1 , 1 ≤ j ≤ n2 (A-1)

where F−1
ij (·;Λij,t) is the quantile function of the conditional Poisson distribution with conditional

mean Λij,t, Uij,t ∼ U(0, 1) are such that vec(Ut)|Ft−1 ∼ Cr, and Ut = (Uij,t) is a n1 × n2 matrix.

Define Λt = (Λij,t) the n1 × n2 matrix of Poisson conditional means. When N = 2 the multilinear

products reduce to bilinear matrix products. In particular, following (2) the dynamics of the copula

tensor count autoregression, for t ∈ Z, boils down to

Vt = D + A1Vt−1A
′
2 +B1Zt−1B

′
2 +Q1Xt−1Q

′
2 (A-2)

where D ∈ Rn1×n2 is a matrix of intercepts. First note that the left matrices A1, B1, Q1 reflect

row-wise interactions, and the right matrices A2, B2, Q2 introduce column-wise dependence, and

therefore the bilinear matrix products in (A-2) combine the row-wise and column-wise interactions.
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Figure A-1: Monthly number of police reports for 2 crimes (Cr1, Cr2) in 2 cities of Australia (City1, City2) from

January 1995 to December 2022.

It is easier to see how the coefficient matrices reflect the row and column structures by looking at

a few special cases. Define the single elements of a n1 × n2 matrix As =
(
A

(s)
ij

)
for s = {1, 2},

i = 1, . . . , n1 and j = 1, . . . , n2. Consider the case without covariates and A1 = B1 = I. Then

the model reduces to Vt = D + Vt−1A
′
2 + Zt−1B

′
2. If we consider the crime dataset described in

Figure A-1 the first column of the model is given by

City1 City1 City2 City1 City2(
VCr1

VCr2

)
t

=

(
D11

D21

)
+ A

(2)
11

(
VCr1

VCr2

)
t−1

+ A
(2)
12

(
VCr1

VCr2

)
t−1

+ B
(2)
11

(
ZCr1

ZCr2

)
t−1

+ B
(2)
12

(
ZCr1

ZCr2

)
t−1

which means that at time t, the rescaled mean (Vt) of a crime in one city, is a linear combination

of rescaled means of the same crime from all the cities at t − 1 and the past values of the same

(rescaled) crime from all the cities at t−1. This linear combination is the same for different crimes.

Therefore A2, B2 capture the column-wise interactions, i.e. interactions among cities. However, the

interactions do not have any spillover, i.e. there are no interactions among the different crimes.

Conversely, if we let A2 = B2 = I in model (A-2), then a similar interpretation can be obtained,

where the matrices A1, B1 reflect row-wise interactions, i.e. interactions among the crimes within

each city. There are no interactions among the different cities.

We can also give a second interpretation. For example, in the case A2 = B2 = I the model

becomes Vt = D + A1Vt−1 + B1Zt−1. By defining Vj,t the j column of Vt, it is clear that each

column of Vt follows Vj,t = Dj + A1Vj,t−1 + B1Zj,t−1 for j = 1, . . . , n2. In other words, for each

city, its crimes follow a multivariate count autoregression and the effects A1, B1 are the same for

different cities. Finally, if A1 = B1 = I each row of Vt, say Vi,t, would follow a multivariate count

autoregression, and the coefficient matrices corresponding to different rows would be the same.
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Appendix B Proofs of the main results

B.1 Proof of Theorem 1

Since the vectorized form (4) is equivalent to model (1)-(2) we can show the identification of pa-

rameters directly on (4). Consider the case N = 2. We need to prove that, under conditions I, for

two different pairs of matrices {A1, A2} and {Ã1, Ã2} we have that A2 ⊗ A1 = Ã2 ⊗ Ã1 if and only

if A1 = Ã1 and A2 = Ã2. The if statement follows trivially. For space convenience set n1 = n2 = 2

but the argument is valid for any arbitrary value of ns. Then,

A2 ⊗ A1 =


A

(2)
11 A

(2)
11 A

(1)
12 A

(2)
12 A

(2)
12 A

(1)
12

A
(2)
11 A

(1)
21 A

(2)
11 A

(1)
22 A

(2)
12 A

(1)
21 A

(2)
12 A

(1)
22

A
(2)
21 A

(2)
21 A

(1)
12 A

(2)
22 A

(2)
22 A

(1)
12

A
(2)
21 A

(1)
21 A

(2)
21 A

(1)
22 A

(2)
22 A

(1)
21 A

(2)
22 A

(1)
22


since A

(1)
11 = 1. A similar formula holds for Ã2 ⊗ Ã1 with Ã

(1)
ij , Ã

(2)
ij instead of A

(1)
ij , A

(2)
ij . It is clear

that to have A2 ⊗ A1 = Ã2 ⊗ Ã1 it is necessary that a2 = ã2, where a2 = (A
(2)
11 , A

(2)
2,1, A

(2)
1,2, A

(2)
2,2)

′

and ã2 = (Ã
(2)
11 , Ã

(2)
2,1, Ã

(2)
1,2, Ã

(2)
2,2)

′. However, vec(A2) = a2 and vec(Ã2) = ã2 hence A2 = Ã2. Now

for identification of A1 we note that A2 ⊗ A1 = A2 ⊗ Ã1 is only possible if a1 = ã1 where a1 =

(A
(1)
2,1, A

(1)
1,2, A

(1)
2,2)

′ and ã1 = (Ã
(1)
2,1, Ã

(1)
1,2, Ã

(1)
2,2)

′. Under the latter condition and since vec(A1) = (1, a′1)
′,

vec(Ã1) = (1, ã′1)
′ we have that vec(A1) = vec(Ã1) and therefore A1 = Ã1.

For N = 3, the associative property of the Kronecker product guarantees that A3 ⊗ A2 ⊗ A1 =

(A3 ⊗ A2) ⊗ A1. Then by previous arguments, since A
(2)
11 = 1 we have that A3 ⊗ A2 = Ã3 ⊗ Ã2 if

and only if (iff) A2 = Ã2 and A3 = Ã3. Now set G1 = (A3 ⊗ A2). Since A
(1)
11 = 1 it follows that

G1⊗A1 = G̃1⊗ Ã1 iff G1 = G̃1 and A1 = Ã1 but we proved that G1 = G̃1 iff A2 = Ã2 and A3 = Ã3.

Therefore, wrapping everything together A3 ⊗ A2 ⊗ A1 = Ã3 ⊗ Ã2 ⊗ Ã1 iff A1 = Ã1, A2 = Ã2 and

A3 = Ã3. For N ≥ 4 the same argument applies iteratively to pairwise Kronecker products.

B.2 Proof of Theorem 2

Recall that L̃T (θ) is the log-quasi-likelihood as defined in (9) and L(θ) = E[lt(θ)] is the corresponding

limit. In Lemma C.1 described in section C below we show that the convergence is uniform over

Θ. Therefore, by the uniform limit theorem L(θ) is a continuous function and it attains at least a

maximum in Θ since Θ is compact. We now prove that such maximum is unique so that it can be

univocally identified. To this aim note that Lemma C.2 implies that lt(θ) = lt(θ0) a.s. if and only
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if θ = θ0. By recalling that log(x) ≤ x− 1 for x ∈ R+ with equality only if x = 1 we have a.s.

lt(θ) − lt(θ0) ≤
n∑

h=1

ph(yh,t;λh,t(θ))

ph(yh,t;λh,t(θ0))
− n .

Due to the previous results, the last inequality is strict for all θ ∈ Θ with θ ̸= θ0. Therefore, ∀θ ̸= θ0

E {E [lt(θ) − lt(θ0)|Ft−1]} <
n∑

h=1

E

{
E

[
ph(yh,t;λh,t(θ))

ph(yh,t;λh,t(θ0))

∣∣∣∣Ft−1

]}
− n = 0 ,

where the last equality holds since for h = 1, . . . , n, ph(yh,t;λh,t(θ0)) are the true conditional uni-

variate pmfs of the count processes. Finally we have that

L(θ) − L(θ0) = E {E [lt(θ) − lt(θ0)|Ft−1]} < 0 , ∀θ ̸= θ0 .

This proves that θ0 is the unique maximizer of L(θ). The compactness of Θ and an application of

White (1994, Thm. 3.5) provide the consistency of the estimator.

B.3 Proof of Theorem 3

In order to show the asymptotic normality of the estimator define ST (θ) = ∇θLT , S̃T (θ) = ∇θL̃T

and HT (θ) = T−1
∑T

t=1 −∇2
θlt. Let ρh,l(θ0) = E[εh,t(θ0)εl,t(θ0)|Ft−1]/[

√
λh,t(θ0)

√
λl,t(θ0)] be the

conditional correlation of the vectorized time series with εt(θ0) = yt − λt(θ0). Note that

I(θ0) =
n∑

h=1

n∑
l=1

E

[
ρh,l(θ0)√

λh,t(θ0)
√
λl,t(θ0)

∇θ0λh,t∇θ0λ
′
l,t

]

which is finite by A4 and A9. Recall that
√
TST (θ0) = T−1/2

∑T
t=1 ∇t where ∇t = ∇θ0lt. Note that

{∇t,Ft} is a stationary and ergodic martingale difference since E (∇t|Ft−1) = 0, with a finite second

moments matrix I(θ0). Then, by the central limit theorem for martingales (Billingsley, 1961) it

follows that
√
T ST (θ0)

d−→ N(0, I(θ0)) as T → ∞.

For T large enough θ̂T ∈ Θ̇ by A6, so the following derivatives exist almost surely

0 =
√
T S̃T (θ̂T ) =

√
TST (θ̂T ) + op(1) =

√
TST (θ0) −HT (θ̄)

√
T (θ̂T − θ0) + op(1),

where the first equality comes from the definition (10), the second equality holds by Lemma C.4,

and the third equality is obtained by Taylor expansion at θ0 with θ̄ lying between θ̂T and θ0.

The application of Lemmas C.6-C.7 establishes the asymptotic normality of the estimator θ̂T with

covariance matrix Σ.
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B.4 Proof of Theorem 4

Analogously to the second-stage log-likelihood defined in (12), let LT (θ, r) = T−1
∑T

t=1 lt(θ, r) =

T−1
∑T

t=1 log
[
p
(
yt;λt(θ), r

)]
and L(θ, r) = E[lt(θ, r)] is the corresponding limit. Recall from sec-

tion 3.3 that ψ = (θ′, r′)′ ∈ Ψ where Ψ = Θ × Pv. Define the compact notation LT (θ, r) = LT (ψ)

and L(θ, r) = L(ψ). Lemma C.8 guarantees that LT (ψ) converges to L(ψ) = E[lt(ψ)] uniformly

and therefore the latter attains at least a maximum in Ψ since Ψ is compact. Consequently, also

L(θ0, r) attains at least a maximum in Pv. To prove the uniqueness of such a maximum note that

Lemma C.9 entails lt(θ0, r) = lt(θ0, r0) a.s. if and only if r = r0. By employing analogous arguments

to the proof of Theorem 2 we shall have that

lt(θ0, r) − lt(θ0, r0) ≤
p(yt;λt, r)

p(yt;λt, r0)
− 1 ,

with λt = λt(θ0) and strict inequality for all r ∈ Pv with r ̸= r0. Therefore, ∀r ̸= r0

E {E [lt(θ0, r) − lt(θ0, r0)|Ft−1]} < E

{
E

[
p(yt;λt, r)

p(yt;λt, r0)

∣∣∣∣Ft−1

]}
− 1 = 0 ,

where the last equality holds since p(yt;λt, r0) = p(yt;λt(θ0), r0) is the true conditional pmf of the

vectorial count processes. Finally we have that

L(θ0, r) − L(θ0, r0) = E {E [lt(θ0, r) − lt(θ0, r0)|Ft−1]} < 0 , ∀r ̸= r0 .

An application of White (1994, Thm. 3.10) provides the consistency of the 2SMLE.

Appendix C Technical lemmas

Below we report the statements of the lemmas that were used in Appendix B. The proofs of the

lemmas are given in the online supplementary material.

Lemma C.1. Let the assumptions of Theorem 2 hold. Then, ∥L̃T − L∥Θ → 0 a.s., as T → ∞.

Lemma C.2. Let the assumptions of Theorem 2 hold. Then, for any θ ∈ Θ and all yh ∈ N

ph(yh;λh,t(θ)) = ph(yh;λh,t(θ0)), 1 ≤ h ≤ n, a.s. if and only if θ = θ0 .

Lemma C.3. Let the assumptions of Theorem 3 hold. Then, |||∇θν̃t −∇θνt|||Θ → 0 e.a.s., as

t → ∞, where ∇θνt is the stationary and ergodic derivative process of νt. Furthermore, {∇θνt}t∈Z
has a bounded uniform moment E|||∇θνt|||Θ <∞.

Lemma C.4. Let the assumptions of Theorem 3 hold. Then,
√
T∥ST − S̃T∥Θ → 0 a.s., as T → ∞.
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Lemma C.5. Let the assumptions of Theorem 3 hold. Then, the columns of ∇θ0νt are linearly

independent.

Lemma C.6. Let the assumptions of Theorem 3 hold. Then, H(θ0) and Σ are positive definite.

Lemma C.7. Let the assumptions of Theorem 3 hold. Then, |||HT −H|||Θ → 0 a.s., as T → ∞.

Lemma C.8. Let the assumptions of Theorem 4 hold. Then, ∥LT − L∥Ψ → 0 a.s., as T → ∞.

Lemma C.9. Let the assumptions of Theorem 4 hold. Then, for any r ∈ Pv and all y ∈ Nn

p(y;λt(θ0), r) = p(y;λt(θ0), r0) a.s. if and only if r = r0 .
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S1 Derivatives of copula tensor count autoregressions with

identification constraints

In this section we compute the first derivatives of the tensor model (1)-(2) with respect to the

mean parameters vector θ, under the identifiability constraints of Theorem 1. For convenience the

computation is performed on the vectorized version of the model, defined in (4). The result of

Theorem 1 induces the following constraints on the tensor model (4)

A
(N−1)
11 = · · · = A

(1)
11 = B

(N−1)
11 = · · · = B

(1)
11 = Q

(N−1)
11 = · · · = Q

(1)
11 = 1 .

Therefore, we set the following definitions: a = vec(A), b = vec(B), q = vec(Q), aN = vec(AN),

bN = vec(BN) and qN = vec(QN). Moreover, (1, a′s)
′ = vec(As), (1, b′s)

′ = vec(Bs), (1, q′s)
′ =

vec(Qs) for s = 1, . . . , N − 1. Therefore, the mean parameters vector can be rewritten as θ =

(d′, a′1, . . . , a
′
N , b

′
1, . . . , q

′
N)

′ ∈ Rm1 with m1 = n+ 3(n2
N +

∑N−1
s=1 (n

2
s − 1)).

Define Ix the identity matrix of dimension x × x, and Ox×y a zero matrix of dimension x × y.

Furthermore, for the first derivative matrix of a vectorial function f(·) with respect to a vecto-

rial parameter γ we denote the compact notation ∇γf = ∂f(γ)/∂γ′. By the chain rule ∇b1νt =

∇bνt∇b1b. Moreover, by Seber (2008, 17.35) we have that ∇bBzt−1 = (z′t−1 ⊗ In). Therefore,
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∇bνt = (z′t−1 ⊗ In) +A∇bνt−1 and ∇b1νt = (z′t−1 ⊗ In)∇b1b+A∇bνt−1∇b1b. The same holds for the

other derivatives. By stacking all the derivatives with respect to θ in a matrix we obtain

∇θνt = ∆t−1Ξ + A∇θνt−1 , (S-1)

where ∆t−1 = [In, (ν
′
t−1 ⊗ In), (z

′
t−1 ⊗ In), (x

′
t−1 ⊗ In)] is a n× p∗ block matrix, p∗ = n+ 3n2 and

Ξ =


In On×n2

1−1 . . . On×n2
N

On×n2
1−1 . . . On×n2

N
On×n2

1−1 . . . On×n2
N

On2×n2 ∇a1a . . . ∇aNa On2×n2
1−1 . . . On2×n2

N
On2×n2

1−1 . . . On2×n2
N

On2×n2 On2×n2
1−1 . . . On2×n2

N
∇b1b . . . ∇bN b On2×n2

1−1 . . . On2×n2
N

On2×n2 On2×n2
1−1 . . . On2×n2

N
On2×n2

1−1 . . . On2×n2
N

∇q1q . . . ∇qN q


is a p∗ ×m1 block matrix. Set N = 2. Then, following Magnus and Neudecker (2019, p. 55) some

matrix manipulation entails

∇a1a = ∇a1 vec(A2 ⊗ A1) = ∇a1(Ā2 ⊗ In1) vec(A1) = (Ā2 ⊗ In1)Īn2
1−1 , where

Ā2 = (In2 ⊗Kn1,n2)(a2 ⊗ In1) , Īn2
1−1 =

(
O1×n2

1−1

In2
1−1

)
,

∇a2a = ∇a2 vec(A2 ⊗ A1) = ∇a2(In2 ⊗ Ā1)a2 = In2 ⊗ Ā1 , Ā1 = (Kn1,n2 ⊗ In1)(In2 ⊗ vec(A1)) ,

and Kn1,n2 is the commutation matrix of dimension n1×n2. Similar results hold for the other blocks

of Ξ. Analogous arguments apply by chain rule when N ≥ 3. As an example consider N = 3. Recall

that a = vec(A3 ⊗A2 ⊗A1) and define G3,2 = A3 ⊗A2 with g3,2 = vec(G3,2). Set j = {2, 3}. Then,
by chain rule ∇aja = ∇g3,2a∇ajg3,2 and the two derivatives have the same structure of the ones

above.

S2 Proofs

S2.1 Proof of Proposition 2

The results of Proposition 2 follow the fashion of Straumann and Mikosch (2006, Prop. 3.12) by

applying Bougerol (1993, Thm. 3.1) in the space of continuous functions equipped with the uniform

norm ∥ · ∥Θ. The definition of the SRE (8) guarantees that the function (θ, ν) 7→ hθ(y, x; ν) is

continuous in Θ×Rn for any y ∈ Nn, x ∈ Rn, so the function θ 7→ ν̃t(θ) is almost surely continuous

in the compact Θ. Moreover, the sequence {hθ(yt, xt; ν)} is stationary and ergodic for any ν ∈ Rn,

by assumption A1 and Proposition 1. Therefore, the result follows by showing conditions C1-C2

in Bougerol (1993, Thm. 3.1). First note that

E
(
log+ ∥hθ(yt, xt; ν)∥Θ

)
≤ c0 + c1 ∥ν∥+ c2E ∥f(yt)∥+ c3E ∥xt∥ <∞
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where c0 = ∥d∥Θ, c1 = ∥A∥Θ, c2 = ∥B∥Θ, c3 = ∥Q∥Θ and E ∥f(yt)∥ <∞, E ∥xt∥ <∞ by condition

S2 so C1 is satisfied. Moreover, set the simplified notation hθ(yt, xt; ν) = ht(ν) and let define

h
(k)
θ (yt−k+1, xt−k+1; ν) = ht ◦ht−1 ◦ht−k+1(ν) the k-fold convolution of the function ht. Then, by (4)∥∥∥h(k)θ (yt−k+1, xt−k+1; ν)− h

(k)
θ (yt−k+1, xt−k+1; ν

∗)
∥∥∥
Θ
≤
∣∣∣∣∣∣Ak

∣∣∣∣∣∣
Θ
∥ν − ν∗∥

almost surely, for some k ≥ 1. To prove C2 we need to verify the contraction condition
∣∣∣∣∣∣Ak

∣∣∣∣∣∣
Θ
< 1.

Assumption A1 provides ρ(A) < 1 for all θ ∈ Θ. Therefore, by recalling the definition of spectral

radius ρ(A) = limk→∞
∣∣∣∣∣∣Ak

∣∣∣∣∣∣1/k we have that for some k ≥ 1,
∣∣∣∣∣∣Ak

∣∣∣∣∣∣1/k < 1 and
∣∣∣∣∣∣Ak

∣∣∣∣∣∣ < 1

for all θ ∈ Θ. The contraction condition follows by the compactness of Θ. Finally, we show the

boundedness of the uniform moment E ∥νt∥Θ. We can rewrite (4) by backward substitution

νt =
t−1∑
k=0

Ak (d+Bzt−1−k +Qxt−1−k) + Atν0 , almost surely ,

by using the convention A0 = I. Therefore, with probability 1 for t sufficiently large

∥νt∥Θ ≤
∞∑
k=0

∣∣∣∣∣∣Ak
∣∣∣∣∣∣

Θ
(c0 + c2 ∥zt−1−k∥+ c3 ∥xt−1−k∥) + 1

≤
∞∑
k=0

CAρ
k (c0 + c2 ∥zt−1−k∥+ c3 ∥xt−1−k∥) + 1

with some constants CA ≥ 1 and ρ ∈ (ρ(A), 1). The last inequality follows by recalling that ρ(A) =

limk→∞
∣∣∣∣∣∣Ak

∣∣∣∣∣∣1/k and ρ(A) < ρ therefore there exists an k0 such that for k ≥ k0,
∣∣∣∣∣∣Ak

∣∣∣∣∣∣
Θ
< ρk. It

suffices now to take CA = max
{
1,
∣∣∣∣∣∣Ak

∣∣∣∣∣∣
Θ
/ρk : k = 0, 1, . . . , k0

}
to guarantee that

∣∣∣∣∣∣Ak
∣∣∣∣∣∣

Θ
≤ CAρ

k

for any k ≥ 0. By stationarity E ∥νt∥Θ <∞ holds for any t and the result follows.

S2.2 Proof of Lemma C.1

The lemma is verified by proving the uniform convergence of the two summands of equation (S-2)

below.

|L̃T (θ)− L(θ)| ≤ |L̃T (θ)− LT (θ)|+ |LT (θ)− L(θ)| . (S-2)

Regarding the first term in (S-2) note that l̃t(θ) =
∑n

h=1 yh,t log(λ̃h,t(θ)) − λ̃h,t(θ) and by applying

the inequality | log(x/y)| ≤ |x− y|/min{x, y} we obtain

∥l̃t − lt∥Θ ≤
n∑

h=1

(
yh,t
λL

+ 1

)
∥λ̃h,t − λh,t∥Θ

due to assumption A4. Moreover, Straumann and Mikosch (2006, Lem. 2.1), assumption A2 and

the first moment of A3 imply that ∥l̃t − lt∥Θ
e.a.s.−−−→ 0, as t → ∞. Furthermore, ∥L̃T − LT∥Θ ≤

T−1
∑T

t=1 ∥l̃t − lt∥Θ → 0, almost surely as T → ∞ by Cesaro’s lemma.
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To prove uniform converge of the second term in (S-2) note that by the stationarity conditions

in A1 and the continuity of g−1 in A2 the log-quasi-likelihood contribution lt(θ) is a stationary

ergodic continuous sequence in the compact space Θ. Moreover, by A3

E∥lt∥Θ ≤ E

∥∥∥∥∥
n∑

h=1

yh,t log(λh,t)

∥∥∥∥∥
Θ

+ E

(
n∑

h=1

∥λh,t∥Θ

)
<∞ .

Therefore, Straumann and Mikosch (2006, Thm. 2.7) applies providing ∥LT − L∥Θ → 0 almost

surely, as T → ∞.

S2.3 Proof of Lemma C.2

For a random variable y ∼ Pois(λ) with pmf p(y;λ) we have that for any random variable λ ∈ (0,∞)

p(y;λ) = p(y;λ0) a.s. ∀y ∈ N if and only if λ = λ0 a.s. (S-3)

The if statement is trivial. To prove the only if part we have from the property of Poisson distribution

∞∑
y=0

y p(y, λ) = λ a.s.

Therefore, we obtain that (S-3) holds only if λ = λ0 with probability 1. By the previous argument

it immediately follows that for all h = 1, . . . , n and all yh ∈ N

ph(yh;λh,t(θ)) = ph(yh;λh,t(θ0)) a.s. if and only if λh,t(θ) = λh,t(θ0) a.s.

with probability 1. Therefore, the desired result follows by showing that for any θ ∈ Θ and all

h = 1, . . . , n, λh,t(θ) = λh,t(θ0) a.s. if and only if θ = θ0. However, by A2 g−1 is bijective therefore

it suffices to show that for any θ ∈ Θ

νt(θ) = νt(θ0) a.s. if and only if θ = θ0 . (S-4)

By Proposition 2, {νt(θ)}t∈Z is a stationary sequence and therefore {νt(θ) − νt(θ0)}t∈Z is also sta-

tionary for any θ ∈ Θ. Hence, (S-4) should be verified for any t ∈ Z. The result is proved

by contradiction. Assuming that νt−1(θ) = νt−1(θ0) = νt−1 a.s., we have νt(θ) − νt(θ0) = d −
d0 + (A − A0)νt−1 + (B − B0)zt−1 + (Q − Q0)xt−1. If νt(θ) = νt(θ0) a.s. with d ̸= d0 then

0 ̸= d0− d = (A−A0)νt−1+(B−B0)zt−1+(Q−Q0)xt−1 a.s. and the equality will be possible only

if at least one of the following is satisfied: i) A−A0 ̸= O and νt−1 has at least one element equal to

a non-zero constant. ii) B−B0 ̸= O and zt−1 has at least one element equal to a non-zero constant.

iii) Q−Q0 ̸= O and xt−1 has at least one element equal to a non-zero constant. However, zt−1 and
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xt−1 are non-constant vectors and by the conditions defined in A5, νt−1 is non-degenerate. Then,

it is a function of random variables in all its elements and is a non-constant vector. Therefore, if

νt(θ) = νt(θ0) a.s. then d = d0 and a.s. 0 = (A − A0)νt−1 + (B − B0)zt−1 + (Q − Q0)xt−1. Now

to have νt(θ) = νt(θ0) a.s. with A ̸= A0, B ̸= B0 and Q ̸= Q0 we shall have that at least one

element of νt−1, zt−1 and xt−1 should equal 0 a.s., but this is impossible since they are non-constant

vectors. Therefore, if νt(θ) = νt(θ0) a.s. then A = A0, B = B0 and Q = Q0, and by the identifica-

tion assumption in A5 and Theorem 1 this implies that As = A0,s, Bs = B0,s and Qs = Q0,s, for

s = 1, . . . , N . The result (S-4) follows.

S2.4 Proof of Lemma C.3

The result is proved by applying Straumann and Mikosch (2006, Thm. 2.10) to the derivative

function defined in (S-1). To this aim recall from section S1 that the derivatives of the vectorized

tensor model under the identifiability constraintsA5 are∇θνt = ∆t−1Ξ+A∇θνt−1. Set the simplified

notation ξt(x) = ∆tΞ + Ax so ξt(0) = ∆tΞ. Therefore, the result follows by showing conditions

S.1-S.3 in Straumann and Mikosch (2006, Thm. 2.10) for ξt equipped with the uniform norm |||·|||Θ.
Recall that ∆t = [In, (ν

′
t ⊗ In), (z

′
t ⊗ In), (x

′
t ⊗ In)] is a n× p∗ block matrix, with p∗ = n+ 3n2, and

Ξ is a p∗ ×m1 matrix of parameters. From basic properties of norms on block matrices it follows

E|||∆tΞ|||Θ ≤ E (|||In|||+ |||ν ′t ⊗ In|||Θ + |||z′t ⊗ In|||+ |||x′t ⊗ In|||) |||Ξ|||Θ
≤ (1 + E ∥νt∥Θ + E ∥zt∥+ E ∥xt∥) cΞ ,

which is finite by condition S2 and Proposition 2, and the second inequality follows from |||z′ ⊗ I||| =
maxh zh ≤ ∥z∥ with cΞ = |||Ξ|||Θ. Therefore S.1 holds. To prove S.2, define ξ

(k)
t (x) = ξt ◦ ξt−1 ◦

ξt−k+1(x) the k-fold convolution of the function ξt. Then,∣∣∣∣∣∣∣∣∣ξ(k)t (x)− ξ
(k)
t (y)

∣∣∣∣∣∣∣∣∣
Θ
≤
∣∣∣∣∣∣Ak

∣∣∣∣∣∣
Θ
|||x− y|||

almost surely, for some k ≥ 1. Following the proof of Proposition 2, we can conclude that
∣∣∣∣∣∣Ak

∣∣∣∣∣∣
Θ
<

1, by A1, therefore the contraction condition S.2 is verified. Finally, let ξ̃t(x) = ∆̃tΞ + Ax where

∆̃t is defined as ∆t by substituting νt with ν̃t. Then, ξ̃t(0)− ξt(0) = [On×n, (ν̃t − νt)
′ ⊗ In, On×2n2 ]Ξ.

Moreover, almost surely∣∣∣∣∣∣∣∣∣ξ̃t(0)− ξt(0)
∣∣∣∣∣∣∣∣∣

Θ
≤ |||(ν̃t − νt)

′ ⊗ In|||ΘcΞ ≤ cΞ ∥ν̃t − νt∥Θ
e.a.s.−−−→ 0 , as t→ ∞ ,

where the convergence follows from Proposition 2. By further noting that ∇xξ̃t−∇xξt = A−A = 0,

S.3 is satisfied. Finally, we prove that E|||∇θνt|||Θ <∞. Following (S-1) we can rewrite the derivative
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by backward substitution

∇θνt =
t−1∑
k=0

Ak∆t−1−k + At∇θν0 , almost surely .

Therefore, with probability 1 for t sufficiently large

|||∇θνt|||Θ ≤
∞∑
k=0

∣∣∣∣∣∣Ak
∣∣∣∣∣∣

Θ
|||∆t−1−kΞ|||Θ + 1 ≤

∞∑
k=0

CAρ
k|||∆t−1−kΞ|||Θ + 1

where the constants CA ≥ 1 and ρ ∈ (ρ(A), 1) are defined analogously to the proof of Proposition 2.

The result follows by stationarity and E|||∆tΞ|||Θ <∞.

S2.5 Proof of Lemma C.4

First note that ∇θ l̃t =
∑n

h=1(yh,t/λ̃h,t(θ)− 1)∇θλ̃h,t and

∇θlt −∇θ l̃t =
n∑

h=1

yh,t

[
λ̃h,t(θ)∇θλh,t − λh,t(θ)∇θλ̃h,t

λh,t(θ)λ̃h,t(θ)

]
+∇θλ̃h,t −∇θλh,t

=
n∑

h=1

yh,t


(
λ̃h,t(θ)− λh,t(θ)

)
∇θλh,t + λh,t(θ)

(
∇θλh,t −∇θλ̃h,t

)
λh,t(θ)λ̃h,t(θ)

+∇θλ̃h,t −∇θλh,t .

Therefore,

∥∇θlt −∇θ l̃t∥Θ ≤
n∑

h=1

λ−2
L yh,t∥∇θλh,t∥Θ∥λ̃h,t − λh,t∥Θ +

(
1 + λ−1

L yh,t
)
∥∇θλ̃h,t −∇θλh,t∥Θ . (S-5)

For h = 1, . . . , n, we have that E[log+(yh,t∥∇θλh,t∥Θ)] ≤ E[log+(yh,t)] + E(log+ ∥∇θλh,t∥Θ) < ∞,

by A3 and A7, respectively. Moreover, by A2 and Straumann and Mikosch (2006, Lem. 2.1) the

first summand of (S-5) converges e.a.s. to 0, as t → ∞. Regarding the second summand of (S-5),

analogously as before E[log+(yh,t)] <∞, by A3. Furthermore,

∥∇θλ̃h,t −∇θλh,t∥Θ = ∥∇ν̃h,tg
−1∇θν̃h,t −∇νh,tg

−1∇θνh,t∥Θ
≤ ∥∇ν̃h,tg

−1∥Θ∥∇θν̃h,t −∇θνh,t∥Θ + ∥∇θνh,t∥Θ∥∇ν̃h,tg
−1 −∇νh,tg

−1∥Θ ,

where for large enough t

∥∇θλ̃h,t −∇θλh,t∥Θ ≤
(
1 + ∥∇νh,tg

−1∥Θ
)
∥∇θν̃h,t −∇θνh,t∥Θ + ∥∇θνh,t∥Θ∥∇ν̃h,tg

−1 −∇νh,tg
−1∥Θ ,
(S-6)

by A6-A7. The results of Lemma C.3 in Appendix C entail that ∥∇θν̃h,t−∇θνh,t∥Θ converges e.a.s

to 0, as t → ∞ and E(log+ ∥∇θνh,t∥Θ) < ∞. Therefore, Straumann and Mikosch (2006, Lem. 2.1)
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and A7 establish that (S-6) converges e.a.s to 0, as t → ∞. This implies that also (S-5) converges

e.a.s to 0, as t→ ∞. An application of Straumann and Mikosch (2006, Lem. 2.1) provides

lim
T→∞

T∥ST − S̃T∥Θ ≤ lim
T→∞

T∑
t=1

∥∇θlt −∇θ l̃t∥Θ =
∞∑
t=1

∥∇θlt −∇θ l̃t∥Θ <∞ , a.s.

which entails the result.

S2.6 Proof of Lemma C.5

Recall that from (S-1), ∇θ0νt = ∆t−1Ξ+A∇θ0νt−1, where all the parameters matrices Ξ and A are

evaluated at θ = θ0. We first prove that ∀η ∈ Rm1 , Ξη = 0 only if η = 0. Consider N = 2. For

space convenience set n1 = n2 = 2 but the argument is valid for any arbitrary value of ns. Then,

following the notation of section S1, the matrix Ξ is a block matrix and the second block is related

to the derivatives of a = vec(A):

(∇a1a,∇a2a) ηa =



0 0 0 A
(2)
11 0 0 0

A
(1)
11 0 0 A

(2)
21 0 0 0

0 0 0 0 A
(2)
11 0 0

A
(1)
21 0 0 0 A

(2)
21 0 0

0 A
(1)
11 0 A

(2)
12 0 0 0

0 0 A
(1)
11 A

(2)
22 0 0 0

0 A
(1)
21 0 0 A

(2)
12 0 0

0 0 A
(1)
21 0 A

(2)
22 0 0

0 0 0 0 0 A
(2)
11 0

A
(1)
12 0 0 0 0 A

(2)
21 0

0 0 0 0 0 0 A
(2)
11

A
(1)
22 0 0 0 0 0 A

(2)
21

0 A
(1)
12 0 0 0 A

(2)
12 0

0 0 A
(1)
12 0 0 A

(2)
22 0

0 A
(1)
22 0 0 0 0 A

(2)
12

0 0 A
(1)
22 0 0 0 A

(2)
22



ηa =



A
(2)
11 ηa,4

A
(1)
11 ηa,1 + A

(2)
21 ηa,4

A
(2)
11 ηa,5

A
(1)
21 ηa,1 + A

(2)
21 ηa,5

A
(1)
11 ηa,2 + A

(2)
12 ηa,4

A
(1)
11 ηa,3 + A

(2)
22 ηa,4

A
(1)
21 ηa,2 + A

(2)
12 ηa,5

A
(1)
21 ηa,3 + A

(2)
22 ηa,5

A
(2)
11 ηa,6

A
(1)
12 ηa,1 + A

(2)
21 ηa,6

A
(2)
11 ηa,7

A
(1)
22 ηa,1 + A

(2)
21 ηa,7

A
(1)
12 ηa,2 + A

(2)
12 ηa,6

A
(1)
12 ηa,3 + A

(2)
22 ηa,6

A
(1)
22 ηa,2 + A

(2)
12 ηa,7

A
(1)
22 ηa,3 + A

(2)
22 ηa,7



(S-7)

where ηa = (ηa,1, ηa,2, . . . , ηa,7)
′ is the subvector of η associated to the block of Ξ related to a. By

A8, A
(2)
11 ̸= 0. Therefore if (∇a1a,∇a2a)ηa = 0 then the subvector (ηa,4, ηa,5, ηa,6, ηa,7)

′ needs to be

zero. In such a case, the vector (S-7) reduces to(
0, ηa,1, 0, A

(1)
21 ηa,1, ηa,2, ηa,3, A

(1)
21 ηa,2, A

(1)
21 ηa,3, 0, A

(1)
12 ηa,1, 0, A

(1)
22 ηa,1, A

(1)
12 ηa,2, A

(1)
12 ηa,3, A

(1)
22 ηa,2, A

(1)
22 ηa,3

)′
,

(S-8)
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where we have used the fact that A
(1)
11 = 1, so also (ηa,1, ηa,2, ηa,3)

′ = 0 whenever (∇a1a,∇a2a)ηa = 0.

Analogous arguments apply to the other blocks of Ξ and by chain rule to the case N ≥ 3 by following

the notation described at the end of section S1.

Recall that ∆t−1 = [In, (ν
′
t−1 ⊗ In), (z

′
t−1 ⊗ In), (x

′
t−1 ⊗ In)] is a n× p∗ block matrix. Hence, the

columns of ∆t−1 are made by a single element of one of the vectors {1, νt−1, yt−1, xt−1}. By A8, the

elements of (y′t−1, x
′
t−1)

′ are linearly independent and are non-constant. Moreover, by the definition

in (4) and A5 the elements of νt−1 are non-constant and are not linear combinations of each others

or of (y′t−1, x
′
t−1)

′. Therefore, the columns of ∆t−1 are linearly independent implying that ∀π ∈ Rp∗ ,

∆t−1π = 0 a.s. only if π = 0.

Now set π = Ξη. By previous arguments, ∀η ∈ Rm1 , π = 0 only if η = 0 and in turn ∆t−1π = 0

a.s. only if π = 0. Therefore we obtain that ∀η ∈ Rm1 , ∆t−1Ξη = 0 a.s. only if η = 0. Finally, we

conclude the proof by contradiction. Note that ∇θ0νtη = ∆t−1Ξη + A∇θ0νt−1η. If ∇θ0νtη = 0 a.s.

for some η ̸= 0 then also ∇θ0νt−1η = 0 a.s. by stationarity. Then, we will have ∆t−1Ξη = 0 a.s. for

some η ̸= 0 but this is impossible since we showed that ∆t−1Ξη = 0 a.s. only if η = 0. Therefore,

we conclude that ∀η ∈ Rm1 , ∇θ0νtη = 0 a.s. only if η = 0.

S2.7 Proof of Lemma C.6

Note that H(θ0) =
∑n

h=1 E
(
λ−1
h,t(θ0)∇θ0λh,t∇θ0λ

′
h,t

)
. Therefore, for each η ∈ Rm1 , with η ̸= 0,

η′H(θ0)η =
∑n

h=1 E
[
λ−1
h,t(θ0)(η

′∇θ0λh,t)
2
]
≥ 0, and to obtain positive definiteness we need to show

that there exists at least one h such that η′∇θ0λh,t ̸= 0, for each η ∈ Rm1 , with η ̸= 0. Note

that η′∇θ0λh,t = η′∇θ0νh,t∇νh,tg
−1 and ∇νh,tg

−1 ̸= 0 since g(·) is a non-constant invertible function.

Finally, the result of Lemma C.5 in Appendix C implies that there exists at least one h such

that η′∇θ0νh,t ̸= 0, for each η ∈ Rm1 , with η ̸= 0. Therefore, H(θ0) is positive definite. Recall that

I(θ0) = E(∇θ0lt ∇θ0l
′
t) where ∇θ0lt =

∑n
h=1(yh,t/λh,t(θ0)−1)∇θ0λh,t =

∑n
h=1mh,t∇θ0λh,t. Therefore,

for each η ∈ Rm1 , with η ̸= 0, η′I(θ0)η = E [(η′∇θ0lt)
2] ≥ 0 and the strict inequality follows if

η′∇θ0lt ̸= 0, for each η ∈ Rm1 , with η ̸= 0. The last condition is satisfied if there exists at least one

h such that η′∇θ0λh,t ̸= 0, for each η ∈ Rm1 , with η ̸= 0, because a.s. mh,t ̸= 0 and the equality

mh,tη
′∇θ0λh,t = −

∑
l ̸=hml,tη

′∇θ0λl,t is impossible. Indeed, in η′∇θ0λh,t = −m−1
h,t

∑
l ̸=hml,tη

′∇θ0λl,t

the left-hand side is Ft−1 measurable whereas the right-hand side is not since it depends on yt. Hence,

I(θ0) is positive definite. The positive definiteness of the matrix Σ follows since for all δ ∈ Rm1 ,

with δ ̸= 0, we have H(θ0)
−1δ ̸= 0 since H(θ0)

−1 is full rank. Now by setting η = H(θ0)
−1δ we

proved that η′I(θ0)η > 0. Therefore, it follows that δ′H(θ0)
−1I(θ0)H(θ0)

−1δ > 0.

Supplementary Appendix pg. 8



S2.8 Proof of Lemma C.7

Recall that the second derivative matrix of the log-quasi-likelihood contribution is

∇2
θlt =

n∑
h=1

− yh,t
λ2h,t(θ)

∇θλh,t∇θλ
′
h,t +

(
yh,t

λh,t(θ)
− 1

)
∇2

θλh,t .

Furthermore, by A6, ∇2
θlt(θ) is a stationary ergodic continuous sequence in the compact space Θ.

Moreover,

E
∣∣∣∣∣∣∇2

θlt
∣∣∣∣∣∣

Θ
≤

n∑
h=1

E
(
yh,t
∣∣∣∣∣∣λ−2

h,t∇θλh,t∇θλ
′
h,t

∣∣∣∣∣∣
Θ

)
+ E

(
yh,t
∣∣∣∣∣∣λ−1

h,t∇
2
θλh,t

∣∣∣∣∣∣
Θ

)
+ E

∣∣∣∣∣∣∇2
θλh,t

∣∣∣∣∣∣
Θ

is finite by A4, A9 and Cauchy-Schwarz inequality. Therefore, Straumann and Mikosch (2006,

Thm. 2.7) applies providing the result.

S2.9 Proof of Lemma C.8

To prove uniform converge note that by (12) the log-likelihood contribution lt(ψ) is continuous in ψ

since it is a function composition of continuous functions. Moreover, by the stationarity conditions

in A1 and the compactness conditions in A1,B1, lt(ψ) is a stationary ergodic continuous sequence

in the compact space Ψ. Furthermore, an application of Debaly and Truquet (2023, Lem. 6-7)

provides

E∥lt∥Ψ ≤ γ1 + γ2

n∑
h=1

E∥ log [ph(0;λh,t)] ∥Θ + γ3

n∑
h=1

E∥ log [1− ph(0;λh,t)] ∥Θ (S-9)

+ γ4

n∑
h=1

E∥ log [1− Fh(yh,t;λh,t)] ∥Θ + γ5

n∑
h=1

E∥ log [ph(yh,t;λh,t)] ∥Θ ,

where γj ≥ 0, for j = 1, . . . , 5 are non-negative constants. We bound the single summands of

(S-9). First note that E∥ log [ph(0;λh,t)] ∥Θ = E∥ log [exp(−λh,t)] ∥Θ = E∥λh,t∥Θ < ∞ by A3.

Regarding the second term by using the elementary inequalities − log(1−x) ≤ x/(1+x), for x < 1,

x ̸= 0, and e−y/(1 + e−y) ≤ e−x/(1 + e−x), for y ≥ x, we obtain that E∥ log [1− ph(0;λh,t)] ∥Θ =

E supθ∈Θ {− log [1− ph(0;λh,t(θ))]} = E supθ∈Θ {− log [1− exp(−λh,t(θ))]} ≤ e−λL/(1 + e−λL) < ∞
by A4. The last two terms can be bounded by employing the following inequalities log(y!) =∑y

j=1 log(j) ≤ y(y − 1)/2, since log(j) ≤ j − 1; 1 − Fh(yh,t;λh,t) ≥ ph(yh,t + 1;λh,t), since 1 =∑∞
j=0 ph(j;λh,t), and

− log [ph(yh,t;λh,t)] ≤ λh,t − yh,t log(λh,t) +

yh,t∑
j=1

log(j) ≤ λh,t − yh,t log(λh,t) +
yh,t(yh,t − 1)

2
.
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Furthermore, recall that E(y2h,t|Ft−1) = λ2h,t+λh,t where we use the shorthand λt = λt(θ0). Therefore,

E∥ log [ph(yh,t;λh,t)] ∥Θ ≤ C0 +C1E∥λh,t∥Θ +C2E∥λ2h,t∥Θ <∞ by B2, where C0, C1, C2 are positive

constants. Following an analogous argument E∥ log [1− Fh(yh,t;λh,t)] ∥Θ < ∞. Hence, Straumann

and Mikosch (2006, Thm. 2.7) applies providing the result.

S2.10 Proof of Lemma C.9

The if statement is trivial. Set the simplified notation p(r) = p(yt;λt, r) with λt = λt(θ0) and the sin-

gle elements of R = (Rij), R0 = (R0,ij). For i, j = 1, . . . , n define by p(Rij) = p(yi,t, yj,t;λi,t, λj,t, Rij)

the conditional bivariate distribution of (yi,t, yj,t)
′. Since the process yt|Ft−1 follows the Gaussian

copula-based distribution (5), by the marginalization property of the multivariate Gaussian distri-

bution we have that (yi,t, yj,t)
′|Ft−1 follows the bivariate Gaussian copula-based distribution whose

pmf can be written as

p(yi,t, yj,t;λi,t, λj,t, Rij) =

∫ Φ−1[Fi(yi,t;λi,t)]

Φ−1[Fi(yi,t−1;λi,t)]

∫ Φ−1[Fj(yj,t;λj,t)]

Φ−1[Fj(yj,t−1;λj,t)]

ϕRij
(xi, xj)dxidxj (S-10)

where ϕRij
is the bivariate standard normal distribution with correlation parameter Rij. Therefore,

if p(r) = p(r0) then p(Rij) = p(R0,ij) for all i, j = 1, . . . , n. Moreover, define the function

Φ̃(σ) =

∫ wi

−∞

∫ wj

−∞
ϕσ(xi, xj)dxidxj =

∫ wi

−∞
Φ

(
wj − σxi√
1− σ2

)
ϕ(xi)dxi

for some real values wi and wj, where ϕ and Φ are the standard normal pdf and cdf, respectively.

The second equality comes from the application of a well-known integral reduction formula (Curnow

and Dunnett, 1962, eq. (2.5)). After some algebra one finds that

∇σΦ̃ = − 1

1 + σ̄2
ϕ(σj − σ̄wi)ϕ(wi)

where σ̄ = σ(1 − σ2)−1/2 and σj = wj(1 − σ2)−1/2. We see that ∇σΦ̃ is negative therefore Φ̃(·) is
decreasing. Finally, for all i, j = 1, . . . , n it follows that Φ̃(Rij) = Φ̃(R0,ij) by (S-10), and since Φ̃(·)
is one-to-one we conclude that Rij = R0,ij. Hence, p(r) = p(r0) implies r = r0.

S2.11 Proof of Theorem 5

The result follows by proving the assumptions of Theorems 2-4 for model (18). The conditions

S2-S3 depend on the function f(·). When such a function is the identity, as in the linear model

(17) it is straightforward to see that the conditions hold with sh = 1 for h = 1, . . . , n. Since

here A0, B0 are non-negative matrices by definition the stationarity condition of Proposition 1
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simplifies to ρ(A0 + B0) < 1. Therefore, A1 follows. Since g is the identity function A2 is verified

by Proposition 2. By the Poisson property (Debaly and Truquet, 2023, Lem. 8,10) it follows that

E∥yt∥p <∞ for any p ≥ 1. Moreover, by following the same arguments of the proof of Proposition 2

we obtain that for t sufficiently large

(E ∥λt∥pΘ)
1
p ≤

∞∑
k=0

CAρ
k
[
c0 + c2 (E ∥yt−1−k∥p)

1
p + c3 (E ∥xt−1−k∥p)

1
p

]
+ 1 <∞ ,

by Minkowski inequality, with some constants c0, c2, c3 ≥ 0, CA ≥ 1 and ρ ∈ (ρ(A), 1). This fact

entails that E∥λt∥pΘ < ∞ for any p ≥ 1. Therefore, A3 follows. By the non-negativity of the

summands in (18) we shall see that λt(θ) ≥ d and λ̃t(θ) ≥ d for all θ ∈ Θ, all t ≥ 1 and any fixed

initialization λ̃0 ∈ Rn
+. The condition A4 holds by the compactness of Θ. This proves the almost

sure consistency of the QMLE. Moreover, B2 is verified hence the 2SMLE is strongly consistent.

The convergence condition in A7 holds trivially since ∇νh,tg
−1 = ∂λh,t/∂νh,t = ∂λ̃h,t/∂ν̃h,t = 1.

For the same reason the second expectation is 0. To prove the finiteness of the first expectation

of A7 note that by arguments analogous to the proof of Lemma C.3 we have that for t sufficiently

large

(E|||∇θλt|||pΘ)
1
p ≤

∞∑
k=0

CAρ
k (E|||∆t−1−kΞ|||pΘ)

1
p + 1 ,

with ∆t−1−k and Ξ defined as in section S1, and following the proof of Lemma C.3

(E|||∆tΞ|||pΘ)
1
p ≤

[
1 + (E ∥λt∥pΘ)

1
p + (E ∥yt∥p)

1
p + (E ∥xt∥p)

1
p

]
|||Ξ|||Θ <∞ .

Therefore E|||∇θλt|||p < ∞ for any p ≥ 1 and A7 holds. Analogous recursions hold for the second

derivatives since for i, j = 1, . . . ,m1 all the terms ∂2λt/∂θi∂θj can be bounded suitably along the

arguments of Fokianos et al. (2009, Supp. Mat., Proof of Lem. 3.4). We omit the details. Therefore

E |||∇2
θλh,t|||

p

Θ <∞ for any p ≥ 1 and h = 1, . . . , n. This fact and Cauchy-Schwarz inequality entail

A9 providing the asymptotic normality of the QMLE.

S2.12 Proof of Theorem 6

The result follows by proving the assumptions of Theorems 2-4 for model (20). By Debaly and

Truquet (2023, eq. (6)) conditions S2-S3 hold for f(·) = log(· + 1) with sh = 1 for h = 1, . . . , n.

Moreover, the implied stationarity condition is verified since ρ(|A|e+ |B|e) ≤ ||||A0|e + |B0|e|||∞ < 1.

Therefore, A1 follows. Following the same argument of Debaly and Truquet (2023, Prop. 4) we

have that E∥yt∥p < ∞ for any p ≥ 1. Moreover, by using the same backward recursion arguments
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of the proof of Proposition 2 we obtain that with probability 1 for t sufficiently large

exp(p∥νt∥Θ) ≤ exp(p) exp

(
p

∞∑
k=0

CAρ
kδk,t

)
= exp(p) exp

(
pCA

1− ρ

∞∑
k=0

(1− ρ)ρkδk,t

)

≤ exp(p)
∞∑
k=0

(1− ρ)ρk exp (Kδk,t) ,

where δk,t = c0 + c2 ∥zt−1−k∥ + c3 ∥xt−1−k∥, K = pCA/(1− ρ), and the last inequality holds by the

convexity of the function exp(Kx) since (1− ρ)ρk > 0 and
∑∞

k=0(1− ρ)ρk = 1. Therefore, we shall

have E [exp(p∥νt∥Θ)] ≤ exp(p)
∑∞

k=0(1− ρ)ρkE [exp (Kδk,t)] and

E [exp (Kδk,t)] = exp(Kc0)E [exp (Kc2 ∥zt−1−k∥) exp (Kc3 ∥xt−1−k∥)]

≤ exp(Kc0) {E [exp (2Kc2 ∥zt∥)]}
1
2 {E [exp (2Kc3 ∥xt∥)]}

1
2

which is finite since E [exp (p ∥zt∥)] = E [(y1,t + 1)p(y2,t + 1)p · · · (yn,t + 1)p] is finite for every p ≥ 1

by Holder’s inequality and the fact that E∥yt∥p < ∞ for every p ≥ 1. This establishes that

E [exp(p∥νt∥Θ)] < ∞ and E∥ exp(pνh,t)∥Θ < ∞ for all p ≥ 1. Therefore, E∥ exp(pνt)∥Θ < ∞ for all

p ≥ 1, where the exponential is applied elementwise, and A3 follows.

Recall that g(·) = log(·) and that for x, y ∈ R, |ex − ey| = ey|ex−y − 1| ≤ |x− y|e|x−y|ey. Then,

with probability 1

∥exp(ν̃h,t)− exp(νh,t)∥Θ ≤ ∥ν̃h,t − νh,t∥Θ exp(∥ν̃h,t − νh,t∥Θ) exp(∥νh,t∥Θ) ,

where for t large enough exp(∥ν̃h,t − νh,t∥Θ) ≤ exp(1) a.s. by Proposition 2. Straumann and Mikosch

(2006, Lem. 2.1) together with E{log+[exp(∥νh,t∥Θ + 1)]} ≤ E ∥νh,t∥Θ + 1 <∞ establishes A2 and

proves the almost sure consistency of the QMLE. Moreover, B2 is verified hence the 2SMLE is

strongly consistent.

The convergence condition in A7 holds here since it is equivalent to A2. Moreover,

E
(
log+ ∥∇θλh,t∥Θ

)
= E

(
log+ ∥exp(νh,t)∇θνh,t∥Θ

)
≤ E

(
log+(exp ∥νh,t∥Θ)

)
+ E

(
log+ ∥∇θνh,t∥Θ

)
.

The last two moments are finite since E∥νt∥Θ < ∞ and by following arguments on the same line

of the proof of Theorem 5, we have E|||∇θνt|||pΘ < ∞ and E|||∇2
θνh,t|||

p

Θ < ∞ for any p ≥ 1 and

h = 1, . . . , n. The remaining moment in A7 is bounded by E∥νt∥Θ and therefore the assumption

holds. Similarly, condition A9 can be verified by noting that

∇2
θλh,t = exp(νh,t(θ))∇θνh,t∇θν

′
h,t + exp(νh,t(θ))∇2

θνh,t

and all the elements possess uniform moments of any order. This fact and Cauchy-Schwarz inequal-

ity entail A9 providing the asymptotic normality of the QMLE.
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S3 Further numerical and empirical results

We provide additional results for the simulation study in section 6.2. We perform an analogous

simulation study for the copula tensor log-linear INGARCH model (1),(19) with true parameters

d = (0.1, 0.4, 0.7, 1.0)′,

A1 =

(
1 0.125

0.1 0.15

)
, A2 =

(
0.1 0.15

0.125 0.15

)
, B1 =

(
1 0.15

0.1 0.2

)
, B2 =

(
0.2 0.2

0.15 0.3

)
,

and identical simulation setup. Figure S-1-S-2 report the kernel density of the QML and 2SQML

estimates for the parameters of the log-linear model. Analogous comments to the linear model case

apply and therefore the estimators work satisfactorily.

In Table S-1 we consider further results for the QMLE and 2SMLE for the simulation study

described in section 6.2. The numerical optimization of the likelihood is initialized using the true

parameter value. We can see that the RMSE of the estimators decreases as the sample size increases

for all the parameters. This further confirms the consistency of the QML/2SQML estimates. The

estimation bias for the parameters is quite moderate for all sample sizes since the standard deviation

is close to the RMSE. Moreover, the small-sample bias in the estimates tends to become negligible

in larger samples for almost all the parameters.

We repeated the same simulation study by using a full copula correlation matrix R where the

single element is generated as Rij = 0.35|i−j|. For the 2SMLE of the correlation matrix the adjusted

estimator (16) is employed. The kernel densities of all estimators are reported in Figures S-3-S-6

and suggest conclusions analogous to the equicorrelation case.

0.40 0.45 0.50 0.55 0.60

0
10

20
30

40

Parameter estimate

Figure S-1: Kernel density estimator for the distribution of the 2SQML estimates for the log-linear copula tensor

INGARCH model with equicorrelation structure obtained from 1000 Monte Carlo replications for sample sizes 500

( ), 1000 ( ) and 2000 ( ), true parameter value ( ); the bandwidth of the kernel is selected by

using Silverman’s rule of thumb.
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Figure S-5: Kernel density estimator for the distribution of the 2SQML estimates for the copula tensor IN-

GARCH model with full correlation structure obtained from 1000 Monte Carlo replications for sample sizes 500

( ), 1000 ( ) and 2000 ( ), true parameter value ( ); the bandwidth of the kernel is selected

by using Silverman’s rule of thumb. The plots are reported rowwise following the order of parameter vector

r = (R21, R31, R41, R32, R42, R43)
′.
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Figure S-6: Kernel density estimator for the distribution of the 2SQML estimates for the copula tensor log-

linear INGARCH model with full correlation structure obtained from 1000 Monte Carlo replications for sample

sizes 500 ( ), 1000 ( ) and 2000 ( ), true parameter value ( ); the bandwidth of the kernel is

selected by using Silverman’s rule of thumb. The plots are reported rowwise following the order of parameter vector

r = (R21, R31, R41, R32, R42, R43)
′.
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The first-stage QML estimation results for the log-linear model were presented in the main text.

The corresponding first-stage QML estimates for the linear model are α̂ = 0.64∗ and

B̂1 =



Receive Motor Retail Dwell Person

Receive 1.000 0.000 0.003 0.043∗ 0.001

Motor 0.002 1.138∗ 0.004 0.153∗ 0.216∗

Retail 0.006 0.001 1.154∗ 0.006 0.002

Dwell 0.022 0.004 0.013 1.182∗ 0.000

Person 0.000 0.000 0.000 0.000 1.221∗


, B̂2 =



Black. Cant. Liv. North. Parra.

Black. 0.243∗ 0.002 0.032∗ 0.004 0.001

Cant. 0.000 0.277∗ 0.025∗ 0.001 0.002

Liv. 0.014∗ 0.023∗ 0.221∗ 0.002 0.005

North. 0.001 0.026∗ 0.000 0.242∗ 0.000

Parra. 0.010∗ 0.033∗ 0.002 0.000 0.230∗


The remaining figures present the autocorrelation functions of the raw data and the Pearson resid-

uals (both for the linear and log-linear specification).
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Figure S-7: Sample auto-correlation function of the monthly number of police reports for five theft-related crimes

(Receive: Receiving or handling stolen goods; Motor: Steal from motor vehicle; Retail: Steal from retail store;

Dwell: Steal from dwelling; Person: Steal from person) in five cities of Australia (Blacktown; Canterbury-Bankstown;

Liverpool; Northern Beaches; Parramatta).
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Figure S-8: Sample partial auto-correlation function of the monthly number of police reports for five theft-related

crimes (Receive: Receiving or handling stolen goods; Motor: Steal from motor vehicle; Retail: Steal from retail store;

Dwell: Steal from dwelling; Person: Steal from person) in five cities of Australia (Blacktown; Canterbury-Bankstown;

Liverpool; Northern Beaches; Parramatta).
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Figure S-9: Sample auto-correlation function of the residuals of the tensor INGARCH model (21) for the New

South Wales dataset.
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Figure S-10: Sample auto-correlation function of the residuals of the tensor log-linear INGARCH model (22) for

the New South Wales dataset.
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